ﻻ يوجد ملخص باللغة العربية
We numerically model the interaction between an expanding fireball and a stationary external medium whose density is either homogeneous or varies with distance as a power-law. The evolution is followed until most of the fireball kinetic energy is converted into internal energy. The density, pressure and flow Lorentz factor profiles are shown at different stages, including shock and rarefaction wave reflections, for a fireball of initial bulk Lorentz factor Gamma = 100, both in the adiabatic and non-adiabatic (radiative) regimes. For cooling times shorter than the dynamic time, bolometric light-curves are computed for values of Gamma = 50, 100 and 200. We compare the numerical light-curves with analytic results, and find that for a homogeneous external medium there is a simple scaling relationship among light-curves obtained for different parameters. The light-curves for power-law external densities are similar in shape to those in the homogeneous case. We discuss the implications of a comparison of the results with observed Gamma-Ray Burst time histories.
Einsteins general relativity predicts that pressure, in general stresses, play a similar role to energy density in generating gravity. The source of gravitational field, the active gravitational mass density, sometimes referred to as Whittakers mass
We consider the interaction between a relativistic fireball and material assumed to be still located just outside the progenitor star. Only a small fraction of the expected mass is sufficient to efficiently decelerate the fireball, leading to dissipa
The relative strength between forward and reverse shock emission in early gamma-ray burst afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnet
The external forward shock (EFS) models have been the standard paradigm to interpret the broad-band afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be ach
(Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in unifo