ﻻ يوجد ملخص باللغة العربية
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the ability of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
The Fermi GBM Catalog has been recently published. Previous classification analyses of the BATSE, RHESSI, BeppoSAX, and Swift databases found three types of gamma-ray bursts. Now we analyzed the GBM catalog to classify the GRBs. PCA and Multiclusteri
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the I
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of d
Different forms of long gamma-ray bursts (GRBs) Luminosity Functions are considered on the basis of an explicit physical model. The inferred flux distributions are compared with the observed ones from two samples of GRBs, Swift and Fermi GBM. The bes
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv