ﻻ يوجد ملخص باللغة العربية
The paper surveys recent progress in establishing uniqueness and developing inversion formulas and algorithms for the thermoacoustic tomography. In mathematical terms, one deals with a rather special inverse problem for the wave equation. In the case of constant sound speed, it can also be interpreted as a problem concerning the spherical mean transform.
We present a family of closed form inversion formulas in thermoacoustic tomography in the case of a constant sound speed. The formulas are presented in both time-domain and frequency-doma
The problem of image reconstruction in thermoacoustic tomography requires inversion of a generalized Radon transform, which integrates the unknown function over circles in 2D or spheres in 3D. The paper investigates implementation of the recently dis
A novel computational, non-iterative and noise-robust reconstruction method is introduced for the planar anisotropic inverse conductivity problem. The method is based on bypassing the unstable step of the reconstruction of the values of the isotherma
A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seism
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators