ﻻ يوجد ملخص باللغة العربية
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Holder stability with both partial boundary and interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
The paper studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations. We introduce a method to solve inverse problems for non-linear equations using interaction of three waves, that makes it po
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated v
We develop a version of Haar and Holmgren methods which applies to discontinuous solutions of nonlinear hyperbolic systems and allows us to control the L1 distance between two entropy solutions. The main difficulty is to cope with linear hyperbolic s
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases
In this paper we introduce the randomised stability constant for abstract inverse problems, as a generalisation of the randomised observability constant, which was studied in the context of observability inequalities for the linear wave equation. We