ترغب بنشر مسار تعليمي؟ اضغط هنا

Path Integration in Conical Space

119   0   0.0 ( 0 )
 نشر من قبل Georg Junker
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrodinger equation modified with the Gaussian and the mean curvature.



قيم البحث

اقرأ أيضاً

The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By gauging $SO(2) otimes T(1)$, first, we derive the metric, curvature, and torsion of the medium of dispiratio n. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We obtain also the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schrodingers equation in the case of disclination, we suggest that Schrodinger equation may have to be modified by a curvature term.
69 - Albert Much 2016
Generators of the Poincare group, for a free massive scalar field, are usually expressed in the momentum space. In this work we perform a transformation of these generators into the coordinate space. This (spatial)-position space is spanned by eigenv ectors of the Newton-Wigner-Pryce operator. The motivation is a deeper understanding of the commutative spatial coordinate space in QFT, in order to investigate the non-commutative version thereof.
151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In t his paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
The quantum theory of indirect measurements in physical systems is studied. The example of an indirect measurement of an observable represented by a self-adjoint operator $mathcal{N}$ with finite spectrum is analysed in detail. The Hamiltonian genera ting the time evolution of the system in the absence of direct measurements is assumed to be given by the sum of a term commuting with $mathcal{N}$ and a small perturbation not commuting with $mathcal{N}$. The system is subject to repeated direct (projective) measurements using a single instrument whose action on the state of the system commutes with $mathcal{N}$. If the Hamiltonian commutes with the observable $mathcal{N}$ (i.e., if the perturbation vanishes) the state of the system approaches an eigenstate of $mathcal{N}$, as the number of direct measurements tends to $infty$. If the perturbation term in the Hamiltonian does textit{not} commute with $mathcal{N}$ the system exhibits jumps between different eigenstates of $mathcal{N}$. We determine the rate of these jumps to leading order in the strength of the perturbation and show that if time is re-scaled appropriately a maximum likelihood estimate of $mathcal{N}$ approaches a Markovian jump process on the spectrum of $mathcal{N}$, as the strength of the perturbation tends to $0$.
A covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero s et of this transform. The first is informational completeness, for which it is necessary and sufficient that the zero set has dense complement. The second is a version of informational completeness for the Hilbert-Schmidt class, equivalent to the zero set being of measure zero, and the third, known as regularity, is equivalent to the zero set being empty. We give examples demonstrating that all three conditions are distinct. The three conditions are the special cases for $p=1,2,infty$ of a more general notion of $p$-regularity defined as the norm density of the span of translates of the operator in the Schatten-$p$ class. We show that the relation between zero sets and $p$-regularity can be mapped completely to the corresponding relation for functions in classical harmonic analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا