نقدم في هذا العمل تقنية شرائحية بخمسة وسطاء تجميع لإيجاد الحل العددي للمعادلات التفاضلية المتأخرة الخطية و غير الخطية. تعتمد الطريقة على إنشاء تقريبات هرميت الشرائحية في الفضاء C4 و استخدام خمس نقاط تجميع في كل مجال جزئي من حل المسألة. تم إثبات وجود و وحدانية الحل الشرائحي للتقنية المطبقة لهذه المعادلات، كما تمت دراسة الاستقرار لهذه الطريقة، و تحديد وسطاء التجميع التي تحقق الاستقرار القوي للطريقة الشرائحية. تبين الدراسة التحليلية للتقارب أن الطريقة عندما تم تطبيقها لمسألة اختبار من هذه المعادلات كانت مستقرة من النوع-p و شغلت منطقة الاستقرار مساحات لانهائية في المستوي، علاوة على ذلك كانت الطريقة متناسقة و متقاربة من الرتبة التاسعة. كما تم إثبات فعالية الطريقة الشرائحية المقترحة بحل أربع مسائل اختبار في المعادلات التفاضلية المتأخرة في الحالتين الخطية و غير الخطية، حيث تشير النَتائِج العددية إلى فعالية و كفاءة طريقتنا مقارنة مع بعض الطرائقِ الأخرى.
In this paper, spline technique with five collocation parameters for finding the
numerical solutions of delay differential equations (DDEs) is introduced. The presented
method is based on the approximating the exact solution by C4-Hermite spline
interpolation and as well as five collocation points at every subinterval of DDE.The study
shows that the spline solution of purposed technique is existent and unique and has
strongly stable for some collocation parameters. Moreover, this method if applied to test
problem will be consistent, p-stable and convergent from order nine .In addition ,it
possesses unbounded region of p-stability. Numerical experiments for four examples are
given to verify the reliability and efficiency of the purposed technique. Comparisons show
that numerical results of our method are more accurate than other methods.
المراجع المستخدمة
HONG-JIONG, T. and JIAO-XUN, K., The Numerical Stability of Linear Multistep Methods for Delay Differential Equations with Many Delays, Siam, J. Numer. Anal., Vol. 33, 1996. pp. 883-889
HU, GUANG-DA, Stability of Runge-Kutta Methods for Delay Differential Systems with Multiple Delays, IMA J. Numer. Anal., Vol. 19, 1999. pp. 349-359
TORELLI, L., Stability of Numerical Methods for Delay Differential Equations, J. Comput. Appl. Math. Vol. 25, 1989. pp. 15-26