يُعبَّر عن معظم المسائل العلميَّة و الهندسيَّة بمعادلات تفاضليَّة جزئية خطية و غير
خطية، و قد نجد صعوبة في حل مثل هذه المعادلات بالأسلوب التحليلي، لذا فقد حاولنا
في هذه المقالة تطبيق طريقة HPM على جملة معادلات جزئية غير خطية.
In this article, we propose a powerful method called
homotopy perturbation method (HPM) for obtaining the
analytical solutions for an non-linear system of partial
differential equations. We begin this article by apply HPM
method for an important models of linear and non-linear
partial differential equations.
المراجع المستخدمة
Biazar, J & Ghazvini, H . 2009 – Convergence of the homotopy perturbation method for partial differential equations . Vol .10 , 2633-2640
DENIZ, S. & BILDIK , N. 2014 _ Comparison of Adomian Decomposition Method and Taylor Matrix Method in Solving Different Kinds of Partial Differential . International Journal of Modeling and Optimization . Vol . 4 , 292-298p
Desai , K .R . & V.H.Pradhan . 2013 _ Solution by Homotopy Perturbation Method of Linear and Nonlinear Diffusion Equation . International Journal of Emerging Technology and Advanced Engineering . Vol . 3 , 171-175 p
هدف هذا البحث إلى تسليط الضوء على نتائج كلاسيكية و تقديم مبرهنات جديدة مدعمة بالأمثلة التطبيقية المناسبة عن السلوك المقارب في جوار اللانهاية لحلول معادلات تفاضلية غير خطية من المرتبة الثالثة باستخدام المتراجحة التكاملية لبيهاري ، سوف نحصل على الشروط
تؤول معظم مسائل الفيزياء الرياضية عند حلها إلى حل معادلة تفاضلية جزئيـة أو أكثـر بـشروط
ابتدائية و شروط حدية مفروضة. و هذا ما يعرف بمسائل القيم الحدية للمعادلات التفاضلية.
يدرس هذا البحث حل جملة معادلات تفاضلية جزئية من النوع القطعي المكـافئ و القط
تركز بحثنا في هذه المقالة على دراسة طريقتي ADM – VIM و استخداميما لحل
بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير الخطية مثل (
معادلة كلاين غوردن غير الخطية – معادلة الموجة غير الخطية – معادلة التلغراف
الخطية – معادلة انتشار الح
تتضمن الرسالة أربعة فصول :
الفصل الأول : ويتضمن بعض المفاهيم والتعاريف والمبرهنات التي تتعلق بالبحث.
الفصل الثاني : دراسة استقرار جملة معادلات تفاضلية خطية لا توقفيه ذات تأخير زمني .
الفصل الثالث :دراسة استقرار حل جملة المعادلات التفاضلية الخطية
سنطبق في هذا العمل طريقة دوال سبلاين غير الحدودية من الدرجة الخامسة
لحل معادلة فولتيرا التكاملية الخطية من النوع الثاني ذات النواة الشاذة الضعيفة
حيث قمنا بتطبيق أمثلة عددية لتوضيح هذه الطريقة و مقارنة نتائجها مع نتائج
طرق عددية أخرى .