نهدف في هذه الأطروحة إلى التعرف على النشاط البشري من مقطع فيديو. نبدأ بدراسة مرجعية
تشمل الطرق والخوارزميات المتّبعة في هذا المجال، وعرض لقواعد البيانات العالمية والطرق
المتبعة في الاختبار، ثم ننتقل إلى تصميم نظام للتعرف على النشاط البشري وتنفيذه في بيئة
MATLAB.
In this work, our goal is recognizing human action from video data. First we
propose an overview about Human Action Recognition, includes the famous
methods and previous algorithms, then we propose an algorithm and its
implementation using MATLAB.
المراجع المستخدمة
Wannous Bashar, Jaafar Assef, and Albitar Chadi. "Human Action Recognition using Contour History Images and Neural Networks Classifier." International Research Journal of Engineering and Technology 4.8 (2017): 7
Turaga, Pavan, et al. "Machine recognition of human activities: A survey." IEEE Transactions on Circuits and Systems for Video Technology 18.11 (2008): 1473-1488
Aggarwal, Jake K., and Michael S. Ryoo. "Human activity analysis: A review." ACM Computing Surveys (CSUR) 43.3 (2011): 16
يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا
نحن نحقق في الحث القوي بمساعدة الفيديو، والذي يتعلم محلل دائرة من كل من النص غير المستمر والفيديو المقابل له. التركيز الأساليب الموجودة من التعريفي النحوي متعدد الوسائط على تحريض القواعد الناقص من أزواج الصور النصية، مع نتائج واعدة تظهر أن المعلومات
الغاية من هذا البحث بناء نظام لتصنيف نطق الأرقام الانكليزية وذلك بالاعتماد على نماذج ماركوف المخفية في التصنيف وذلك بالاعتماد على طيف الإشارة في استخراج سمات الإشارات
تهدف اللغة الزمنية الأرضية في مقاطع الفيديو إلى توطين الفترة الزمنية ذات الصلة بالسجن الاستعلام المحدد. الطريقة السابقة تعاملها إما بمهمة الانحدار للحدود أو مهمة استخراج تمتد. ستقوم هذه الورقة بصياغة لغة زمنية تأريض في فهم قراءة الفيديو واقتراح شبكة
تم اقتراح التعلم التلوي مؤخرا لتعلم النماذج والخوارزميات التي يمكن أن تعميمها من حفنة من الأمثلة.ومع ذلك، فإن تطبيقات التنبؤ الهيكلية والمهام النصية تشكل تحديات لخوارزميات التعلم التلوي.في هذه الورقة، نحن نطبق اثنين من خوارزميات التعلم التلوي، والشبك