ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم التعريف لعدد قليل من طلقة التعرف على الكيان

Meta-Learning for Few-Shot Named Entity Recognition

382   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم اقتراح التعلم التلوي مؤخرا لتعلم النماذج والخوارزميات التي يمكن أن تعميمها من حفنة من الأمثلة.ومع ذلك، فإن تطبيقات التنبؤ الهيكلية والمهام النصية تشكل تحديات لخوارزميات التعلم التلوي.في هذه الورقة، نحن نطبق اثنين من خوارزميات التعلم التلوي، والشبكات النموذجية والزواحف الزواحف، إلى عدد قليل من الرصاص التعرف على الكيان (NER)، بما في ذلك طريقة لإدماج نموذج اللغة قبل التدريب والحقول العشوائية الشرطية (CRF).نقترح خطة توليد المهام لتحويل مجموعات بيانات NER الكلاسيكية إلى إعداد القليل من الرصاص، لكل من التدريب والتقييم.باستخدام ثلاث مجموعات بيانات عامة، نظهر أن خوارزميات التعلم التلوي هذه تفوق خطاس بخبراء ذو صقل معقول.بالإضافة إلى ذلك، نقترح مزيجا جديدا من الشبكات النموذجية والزواحف.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في الوقت الحاضر، حقق التعرف على الكيان المسمى (NER) نتائج ممتازة على الشركة القياسية.ومع ذلك، فإن المشكلات الكبيرة تنشأ مع الحاجة إلى تطبيق في مجال معين، لأنه يتطلب جدارا الشكل المشروح مع مجموعة علامات NE مكيفة.هذا واضح بشكل خاص في مجال معالجة المستن دات التاريخية.يتكون الهدف الرئيسي لهذه الورقة من اقتراح وتقييم العديد من طرق تعلم النقل لزيادة درجة النقر التاريخي التشيكي.ندرس العديد من مصادر المعلومات، ونحن نستخدم شباكين عصبيين للنمذجة والاعتراف.نحن نوظف سورانيا لتقييم أساليب التعلم الخاصة بنا، وهي Czech Named Entity Corpus و Czech Historical Enty Enty Engyity Corpus.نظهر أن تمثيل بيرت بضبط جيد وفقط المصنف البسيط المدرب على اتحاد كورسيا يحقق نتائج ممتازة.
نتعامل مع مشكلة شبكات التدريب الذاتي ل NLU في بيئة الموارد المنخفضة --- عدد قليل من البيانات المسمى والكثير من البيانات غير المسماة. إن فعالية التدريب الذاتي هي نتيجة لزيادة مقدار البيانات التدريبية أثناء التدريب. ومع ذلك، يصبح أقل فعالية في إعدادات الموارد المنخفضة بسبب الملصقات غير الموثوقة المتوقعة بواسطة نموذج المعلم على البيانات غير المسبقة. تم استخدام قواعد القواعد، التي تصف الهيكل النحوي للبيانات، في NLU للحصول على شرح أفضل. نقترح استخدام قواعد القواعد في التدريب الذاتي كآلية وضع العلامات الزائفة أكثر موثوقية، خاصة عندما يكون هناك عدد قليل من البيانات المسمى. نقوم بتصميم خوارزمية فعالة تقوم ببناء وتوسيع قواعد قواعد اللغة دون تورط بشري. ثم ندمج القواعد المبنية كآلية وضع العلامات الزائفة في التدريب الذاتي. هناك سيناريوهات محتملة فيما يتعلق بتوزيع البيانات: غير معروف أو معروف في التدريب قبل التدريب. إننا نوضح تجريبيا أن نهجنا يتفوق بشكل كبير على الأساليب الحديثة في ثلاث مجموعات بيانات معيار لكل من السيناريوهات.
الملخص نتخذ خطوة نحو معالجة تمثيل القارة الأفريقية في أبحاث NLP من خلال جلب مختلف أصحاب المصلحة من أصحاب المصلحة في إنشاء بيانات كبيرة متاحة للجمهور وعالية الجودة للتعرف على الكيان المسمى (NER) في عشرة لغات أفريقية.إننا نقوم بالتفصيل خصائص هذه اللغات لمساعدة الباحثين والممارسين على فهم التحديات التي يفرضونها على مهام NER.نقوم بتحليل مجموعات البيانات لدينا وإجراء تقييم تجريبي واسع النطاق للطرق الحكومية في جميع إعدادات التعلم الإشراف والنقل.أخيرا، نطلق سراح البيانات والرمز والنماذج لإلهام البحوث المستقبلية على الأفريقية NLP.1
يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا العمل، نأخذ هذا الاتجاه البحثي إلى المعاكس ودراسة تكبير بيانات المجال عبر المجال لمهمة NER.نحن نبحث في إمكانية الاستفادة من البيانات من مجالات الموارد العالية من خلال إسقاطها في مجالات الموارد المنخفضة.على وجه التحديد، نقترح بنية عصبية رواية لتحويل تمثيل البيانات من الموارد العالية إلى مجال موارد منخفضة من خلال تعلم الأنماط (مثل الأناقة والضوضاء والاختصارات، وما إلى ذلك) في النص الذي يميزها ومساحة ميزة مشتركةحيث يتماشى كلا المجالين.نقوم بتجربة مجموعات بيانات متنوعة وإظهار أن تحويل البيانات إلى تمثيل مجال الموارد المنخفض يحقق تحسينات كبيرة على استخدام البيانات فقط من مجالات الموارد العالية.
حققت أنظمة ربط الكيان (EL) نتائج مثيرة للإعجاب على المعايير القياسية بشكل أساسي بفضل التمثيلات السياقية المقدمة من نماذج اللغة المحددة مسبقا.ومع ذلك، لا تزال هذه الأنظمة تتطلب كميات ضخمة من البيانات - ملايين الأمثلة المسمى - في أفضل حالاتهم، مع أوقات تدريبية تتجاوز غالبا عدة أيام، خاصة عندما تتوفر موارد حسابية محدودة.في هذه الورقة، ننظر إلى كيفية استغلال التعرف على الكيان المسمى (ner) لتضييق الفجوة بين أنظمة EL المدربين على كميات عالية ومنخفضة من البيانات المسمى.وبشكل أكثر تحديدا، نوضح كيف وإلى أي مدى يمكن للنظام أن يستفيد نظام EL من NER لتعزيز تمثيلات كيانه، وتحسين اختيار المرشح، وحدد عينات سلبية أكثر فعالية وفرض قيود صلبة وناعمة على كيانات الإخراج.نطلق سراح البرامج ونقاط التفتيش النموذجية - في https://github.com/babelscape/ner4el.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا