الهدف من هذا العمل هو دراسة التوتال hom (M,N) R بالنظر إليه كبنية جزئية من المودول وذلك لأجل أي مودولين R M and R N . أحد الأسئلة المطروحة هو متى يكون التوتال يساوي hom (N, J (N)) R , أي متى يكون حيث N هي حلقة التشاكلات للمودول.
The object of this paper is to study the total as substructure of hom (M,N) R
for any two modules R M and R N , one of interesting question, is when the total
of a module N equals the hom (N, J (N)) R .
المراجع المستخدمة
Cartan, H. and S. Eilenberg: (1956). Homological Algebra, Princeton Univ. Press
Hamza, H. (1998). - 0 I Rings and - 0 I Modules, Math. J. Okayama Univ. Vol. 40, p. 91-97
Hamza, H. (2011). On ( D-, Ñ-, I - ) semipotent and the total of rings and modules, Damascus University Journal for BASIC SCIENCE. Vol. 27, No 1, P. 9-34
ليكن N, M مودولين فوق الحلقة R . إن الغاية من هذه الورقة هو متابعة دراسة البنـى الجزئيـة
مثل الأساس و المثالي المنفرد و المثالي المنفرد الثنوي و التوتـال. نتـائج R للمودول (N , M (hom
جديدة تم الحصول عليها فعلى سبيل المثال تم إيجاد الشرط اللازم و ا
إن مفهوم الحلقات و المودولات الوراثية و نصف الوراثية ذو أثر كبير في نظرية
الحلقات و المودولات نظرا لارتباط هذا المفهوم بحلقات و مودولات بيير وريكارت. لهذا
السبب قمنا بتعميم هذا المفهوم تحت اسم الحلقات و المودولات شبه الوراثية .
نقوم في عملنا بدراسة الحلقات اليمينية (اليسارية) المرافقة للحلقات شبه الجامدة تحت المسمى - حلقة يمينية (يسارية), و دراسة المودولات المرافقة للمودولات شبه الجامدة تحت المسمى - مودول.
الهدف من هذا البحث هو دراسة المودولات الإسقاطية المحلية و الأفقية المحلية. بشكل خاص، تعد
هذه الورقة متابعة لدراسة المودولات الإسقاطية و الأفقية المحلية للحصول على وصف جديد لهذه
المودولات.
تبين الورقة الأسباب الموجبة للتقييم المؤسساتي للمجلات الدورية العلمية العالمية، و عوامله
و معاييره و مؤشراته و ارتباطه بجودة الدوريات، و تناميها، و توقف صدورها و متطلبات استمراريتها،
علاوة على واقعها المعاصر. و بعض جوانب التوصيف الكيفي للدوريات و ت