ترغب بنشر مسار تعليمي؟ اضغط هنا

المودولات الإسقاطية المحلية و الأفقية المحلية (II)

Locally Projective and Locally Injective Modules II

1244   0   7   0 ( 0 )
 تاريخ النشر 2012
  مجال البحث رياضيات
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الهدف من هذا البحث هو دراسة المودولات الإسقاطية المحلية و الأفقية المحلية. بشكل خاص، تعد هذه الورقة متابعة لدراسة المودولات الإسقاطية و الأفقية المحلية للحصول على وصف جديد لهذه المودولات.



المراجع المستخدمة
Kasch, F. (1982). Modules and Rings, Academic press London and NewYork
Kasch, F. (2002). Locally injective modules and locally projective modules, RockyMountain J. Math. 32(4) 1493-1504
Ware, R. (1971). Endomophism rings of projective modules, Trans. Amer. Math. Soc. 155, p.233-256
قيم البحث

اقرأ أيضاً

إن مفهوم الحلقات و المودولات الوراثية و نصف الوراثية ذو أثر كبير في نظرية الحلقات و المودولات نظرا لارتباط هذا المفهوم بحلقات و مودولات بيير وريكارت. لهذا السبب قمنا بتعميم هذا المفهوم تحت اسم الحلقات و المودولات شبه الوراثية .
الهدف من هذا العمل هو دراسة التوتال hom (M,N) R بالنظر إليه كبنية جزئية من المودول وذلك لأجل أي مودولين R M and R N . أحد الأسئلة المطروحة هو متى يكون التوتال يساوي hom (N, J (N)) R , أي متى يكون حيث N هي حلقة التشاكلات للمودول.
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم نحاول تحديد شروط وجود التحويل المطابق و التحويل الإسقاطي في فضاءات كيلير السوية و تحديد عدد وسطاء الحركة في هذه التحويلات.
ليكن N, M مودولين فوق الحلقة R . إن الغاية من هذه الورقة هو متابعة دراسة البنـى الجزئيـة مثل الأساس و المثالي المنفرد و المثالي المنفرد الثنوي و التوتـال. نتـائج R للمودول (N , M (hom جديدة تم الحصول عليها فعلى سبيل المثال تم إيجاد الشرط اللازم و ا لكافي كي يكون التوتال لحلقـة مـا يساوي مثالياً معيناً لهذه الحلقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا