ترغب بنشر مسار تعليمي؟ اضغط هنا

دراسة تنغيم الكلام المركب باللغة العربية و توليده آلياً

Automatic Prosody Generation for Arabic Text- To - Speech Systems

1575   0   35   0 ( 0 )
 تاريخ النشر 2011
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الهدف الأساسي من هذا البحث دعم تركيب الكلام من نصوص باللغة العربية بتنغيم طبيعي؛ و ذلك بالاعتماد على تحليل لغوي للنصوص المراد تركيبها و توليد قواعد تنغيم يجري استنتاجها من تحليل إشارات مسجلة لمختلف أنواع الجمل باللغة العربية. جرى، بالاستعانة بخبير لغوي، حصر مختلف أنواع الجمل الخبرية و الإنشائية باللغة العربية، ثم إنشاء مدونة نصية تتضمن معظم أنواع هذه الجمل. تضمنت المدونة قرابة 2500 جملة. بعد ذلك جرى تسجيل هذه الجمل صوتياً بالتنغيم الطبيعي ثم بسرد مصطنع خال من التنغيم. في مرحلة لاحقة جرى تحليل إشارات كل نوع من أنواع الجمل بالتنغيم الطبيعي و بالنسخة الخالية من التنغيم لنمذجة أثر التنغيم الطبيعي في محددات الإشارة، و وضع قواعد لتوليد هذا التنغيم آلياً. نعرض في هذا البحث نتائج هذه الدراسة على جمل النفي الخبرية و تطبيق النتائج على كلام مركب باستخدام الأداة المفتوحة المصدر MBROLA. كما يمكن استخدام هذه النتائج مع أي مركب كلام عربي بموسطات، نأمل مستقبلاً، تنفيذ . توليد التنغيم على مركب كلام بأنصاف مقاطع يجري تطويره حالياً، في المعهد العالي للعلوم التطبيقية و التكنولوجيا.



المراجع المستخدمة
Thomas, Craig. Automatic Generation of French Speech (2004). The ACM Student Magazine
Khorasgani, R. R. (n.d.). A Survey on Current Prosodic Modeling Methods. Edmonton, Canada: Department of Computing Science, University of Alberta
Beckman, Mary E.; Hirschberg, Julia. The ToBI Annotation Conventions, Ohio State University, Tech. Rep, 1994
قيم البحث

اقرأ أيضاً

نقدم في هذا البحث مركب كلام للغة العربية ذا جودة عالية، باستعمال طريقة الضم لأنصاف المقاطع الصوتية. يتألف العمل من سبع مراحل أساسية: بناء القاموس الصوتي لأنصاف المقاطع الصوتية، بناء مكون معالجة اللغة الطبيعية الذي يتكون من وحدة المعالجة المسبقة للن ص واستعمال نظام خبير لتحويل النص المشكول إلى مقابله الصوتي، بناء نظام خبير يعتمد على القواعد لتقطيع سلسلة الصوتيمات لكل من الكلمات و العبارات في الجمل إلى مقاطعها الصوتية و إسناد واصفات كل مقطع وفق خوارزمية خاصة باللغة العربية، دراسة تحليلية صوتية للنبر في الحديث المتواصل لاستخراج أثر المقاطع المنبورة على موسطات التنغيم على مستوى الكلمات و العبارات.
تهدف أنظمة تعرف الكلام أليا بشكل عام إلى كتابة ما يقال. تتالف أنظمة تعرف الكلام المستمر آليا في أحدث ما توصل إليه العلم في هذا المجال من أربع مكونات أساسية: معالجة الإشارة، النمذجة الصوتية, النمذجة اللغوية، ومحرك البحث. أما تعرف الكلمات المنفصلة فلا يحتوي على النمذجة اللغوية. التي تقوم بربط الكلمات لتشكيل جملة مفهومة.
في حين أن التلخيص المبشط في بعض اللغات، مثل اللغة الإنجليزية، فقد وصلت بالفعل نتائج جيدة إلى حد ما بسبب توفر موارد تحديد الاتجاه، مثل مجموعة بيانات CNN / Daily Mail، والتقدم الكبير في النماذج العصبية الإنتاجية، والتقدم المحرز في تلخيص الجماع للعربية اللغة الخامسة الأكثر تكلم على مستوى العالم، لا تزال في أحذية الأطفال. في حين أن بعض الموارد لتلخيص الاستخراجي كانت متاحة لبعض الوقت، في هذه الورقة، نقدم أول كائن من ملخصات الأخبار المذهلة التي كتبها الإنسان باللغة العربية، على أمل وضع أساس هذا الخط من البحث لهذه اللغة الهامة. تتكون DataSet من أكثر من 21 ألف عنصر. استخدمنا هذه البيانات هذه البيانات لتدريب مجموعة من أنظمة تلخيص الجماع العصبي للعربية من قبل طرازات اللغة المدربة مسبقا مسبقا مثل بيرت متعددة اللغات وأرابيرت والفتنة متعددة اللغات - 50. كما مجموعة البيانات العربية أصغر بكثير من .g. DataSet CNN / Daily Mail DataSet، كما طبقنا نقل المعرفة عبر اللغات إلى تحسين أداء أنظمةنا الأساسية. تضمنت الإعدادات نماذج ملخصتين تعتمد على M-Bert تدرب أصلا على الهنغارية / الإنجليزية ونظام مماثل على أساس M-BART-50 مدربا أصلا للروسية التي تم ضبطها بشكل جيد للعربية. تم إجراء تقييم النماذج من حيث الحمر، وتم تقييم يدوي للطلاقة وكفاية النماذج أيضا.
يسعى مركز الترجمة الظاهري الوطني (NVTC) إلى الحصول على أدوات تكنولوجيا اللغة البشرية (HLT) التي ستسهل مهمتها لتوفير ترجمات حرفية باللغة الإنجليزية لملفات الصوت والفيديو اللغوية.في المجال النصي، تستخدم NVTC ذاكرة الترجمة (TM) لبعض الوقت وقد أبلغت عن د مج الترجمة الآلية (MT) في سير العمل (Miller et al.، 2020).بينما لقد استكشفنا استخدام ترجمة الكلام (STT) وترجمة الكلام (stt) في الماضي (Tzoukermann و Miller، 2018)، فقد استثمرنا الآن في إنشاء كائن كبير من البشر من صنع الإنسان لتقييم بدائل بدقة.النتائج من تحليلنا لهذه الشقوق وأداء أدوات HLT تشير إلى الطريق إلى الأكثر واعدة للنشر في سير العمل لدينا.
توفر المحاكاة الطبية بيئة تسيطر عليها لتدريب وتقييم المهارات السريرية. ومع ذلك، كمنصة تقييم، فإنه يتطلب وجود فاحص من ذوي الخبرة لتوفير ملاحظات الأداء، والتي تشمل عادة باستخدام قائمة مرجعية محددة المهام. هذا يجعل عملية التقييم غير فعالة ومكلفة. علاوة على ذلك، فإن طريقة التقييم هذه لا توفر الممارسين الطبيين الفرصة للتدريب المستقل. من الناحية المثالية، يجب إجراء عملية ملء قائمة التحقق بواسطة نظام موضوعي تدرك كامل، قادر على الاعتراف بمراقبة الأداء السريرية ومراقبتها. تحقيقا لهذه الغاية، قمنا بتطوير نظام مرجعي تلقائي بالكامل ونظام مرئي تلقائي بالكامل، قادر على تحديد تصرفات سكان التخدير بشكل موضوعي وتحقيق صحة في بيئة محاكاة. بناء على النتائج التي تم تحليلها، يكون نظامنا قادرا على الاعتراف بمعظم المهام في قائمة المراجعة: درجة F1 من 0.77 لجميع المهام، ونتيجة F1 من 0.79 للمهام اللفظية. تطوير نظام يستند إلى تحسين تجربة مجموعة واسعة من منصات المحاكاة. علاوة على ذلك، في المستقبل، يجوز تنفيذ هذا النهج في غرفة التشغيل وغرفة الطوارئ. هذا يمكن أن يسهل تطوير التقنيات المساعدة التلقائية لهذه المجالات.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا