ترغب بنشر مسار تعليمي؟ اضغط هنا

فهم الآلة التفاعلية مع الرسوم البيانية المعرفة الديناميكية

Interactive Machine Comprehension with Dynamic Knowledge Graphs

285   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الفهم القراءة الآلة التفاعلية (IMRC) هو مهام فهم الجهاز حيث تكون مصادر المعرفة يمكن ملاحظتها جزئيا.يجب أن يتفاعل الوكيل مع بيئة بالتتابع لجمع المعرفة اللازمة من أجل الإجابة على سؤال.نحن نفترض أن تمثيلات الرسم البياني هي تحيزات حثي جيدة، والتي يمكن أن تكون بمثابة آلية ذاكرة الوكيل في مهام IMRC.نستكشف أربع فئات مختلفة من الرسوم البيانية التي يمكنها التقاط معلومات نصية على مختلف المستويات.نحن تصف الأساليب التي تقوم ببناء وتحديث هذه الرسوم البيانية هذه ديناميكيا أثناء جمع المعلومات، وكذلك النماذج العصبية لتشفير تمثيلات الرسم البياني في وكلاء RL.تشير تجارب واسعة النطاق على ISquad إلى أن تمثيلات الرسم البياني يمكن أن تؤدي إلى تحسينات كبيرة في الأداء لعوامل RL.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أصبحت الرسوم البيانية المعرفة (KGS) شعبية بشكل متزايد في السنوات الأخيرة. ومع ذلك، نظرا لأن المعرفة تنمو باستمرار وتغييرات، فمن المحتم أن تمتد KGS الموجودة مع الكيانات التي ظهرت أو أنها ذات صلة بنطاق كجم بعد إنشائها. تعتمد البحث في تحديث KGS عادة على استخراج الكيانات المسماة والعلاقات من النص. ومع ذلك، لا يمكن لهذه الأساليب استنتاج كيانات أو علاقات غير مذكورة صراحة. بدلا من ذلك، استغلال نماذج التضمين الانتظار الهيكلية الضمنية للتنبؤ بالعلاقات المفقودة، ولكن لا يمكن التنبؤ بالكيانات المفقودة. في هذه المقالة، نقدم طريقة جديدة لإثراء KG مع كيانات جديدة بالنظر إلى وصفها النصي. لدينا طريقة ترفع نماذج تضمين مشتركة، وبالتالي لا تتطلب كيانات أو علاقات يمكن تسميتها صراحة. نظرا لأن نهجنا يمكن أن تحدد مفاهيم جديدة في كوربوس وثيقة ونقلها إلى كجم، ونجد أن أداء طريقتنا يحسن بشكل كبير عند تمديده مع تقنيات من تعدين حكم الرابطة، والتعدين النصي، والتعلم النشط.
يهدف كتابة كيان الرسم البياني للمعرفة إلى أن ينتج أنواع الكيانات المفقودة في الرسوم البيانية المعرفة التي تعد قضية مهمة ولكنها غير مستحقة.تقترح هذه الورقة طريقة رواية لهذه المهمة من خلال الاستفادة من المعلومات السياقية للكيانات.على وجه التحديد، نقوم بتصميم آليات الاستدلال: I) N2T: استخدام كل جار كل جار بشكل مستقل لاستنتاج نوعه؛2) AGG2T: إجمالي جيران كيان لاستنتاج نوعها.ستنتج هذه الآليات نتائج الاستدلال المتعددة، وتستخدم طريقة تجميع مضاعفة بشكل كبير لتوليد نتيجة الاستدلال النهائي.علاوة على ذلك، نقترح وظيفة خسارة جديدة لتخفيف المشكلة السلبية الخاطئة أثناء التدريب.تجارب على اثنين من كلغ العالم الحقيقي توضح فعالية طريقتنا.يمكن الحصول على شفرة المصدر وبيانات هذه الورقة من https://github.com/cciiplab/cet.
تصميم التمثيلات التعبيرية للكيانات والعلاقات في الرسم البياني المعرفي هو مسعى مهم. في حين أن العديد من الأساليب الحالية تركز بشكل أساسي على التعلم من الأنماط العلائقية والمعلومات الهيكلية، فقد تم تجاهل التعقيد الجوهري لكي كيانات KG أكثر أو أقل. بشكل أكثر ملاءمة، نفترض كيانات KG قد تكون أكثر تعقيدا مما نعتقد، أي، قد يرتدي الكيان العديد من القبعات والأحدث العلائقية قد تشكل بسبب أكثر من سبب واحد. تحقيقا لهذه الغاية، تقترح هذه الورقة التعلم من تمثيلات DESENTANGLED من كيانات كيغ كيغ - وهي طريقة جديدة تقوم بتخفيف الخصائص الكامنة الداخلية لكي كيانات كيغ كيانات. تعمل عملية DESTANGLED الخاصة بنا على مستوى الرسم البياني ويتم الاستفادة من آلية الحي لزيادة الخصائص المخفية لكل كيان. هذا النهج التعلم في التمثيل هذا هو نموذج غير مرجح ومتوافق مع نهج Enonical KG Adgedding. نقوم بإجراء تجارب مكثفة على العديد من مجموعات البيانات القياسية، تجهيز مجموعة متنوعة من النماذج (الإقصاء، بسيطة، والقلق) مع آلية DESTANGLING المقترحة. توضح النتائج التجريبية أن نهجنا المقترح يحسن الأداء بشكل كبير على المقاييس الرئيسية.
مع زيادة الطفرة الأخيرة في التطبيقات الاجتماعية التي تعتمد على الرسوم البيانية المعرفة، أصبحت الحاجة إلى التقنيات لضمان الإنصاف في الأساليب القائمة على KG واضحة بشكل متزايد. أظهرت الأعمال السابقة أن كلية كجمها عرضة للحيوانات الاجتماعية المختلفة، وقد اقترحت طرق متعددة لدخاناتها. ومع ذلك، في مثل هذه الدراسات، كان التركيز على تقنيات deviasing، في حين يتم تحديد العلاقات التي ستكون degiased يدويا من قبل المستخدم. نظرا لأن المواصفات اليدوية هي نفسها عرضة للتحيز الإدراكي البشري، فهناك حاجة إلى نظام قادر على قياس وفضح التحيزات، التي يمكن أن تدعم قرارات أكثر استنارة بشأن ما له ديبي. لمعالجة هذه الفجوة في الأدب، وصفنا إطارا لتحديد التحيزات الموجودة في Adments Graph Admings، بناء على مقاييس BIAS الرقمية. نوضح الإطار بثلاث تدابير تحيز مختلفة حول مهمة التنبؤ بالمهنة، ويمكن امتدت بمرونة لتعريفات وتطبيقات إضافية. يمكن بعد ذلك تسليم العلاقات التي يتم تمييزها على أنها منحازة إلى صانعي القرار للحكم على الدخل اللاحق.
تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة ،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا