مع زيادة الطفرة الأخيرة في التطبيقات الاجتماعية التي تعتمد على الرسوم البيانية المعرفة، أصبحت الحاجة إلى التقنيات لضمان الإنصاف في الأساليب القائمة على KG واضحة بشكل متزايد. أظهرت الأعمال السابقة أن كلية كجمها عرضة للحيوانات الاجتماعية المختلفة، وقد اقترحت طرق متعددة لدخاناتها. ومع ذلك، في مثل هذه الدراسات، كان التركيز على تقنيات deviasing، في حين يتم تحديد العلاقات التي ستكون degiased يدويا من قبل المستخدم. نظرا لأن المواصفات اليدوية هي نفسها عرضة للتحيز الإدراكي البشري، فهناك حاجة إلى نظام قادر على قياس وفضح التحيزات، التي يمكن أن تدعم قرارات أكثر استنارة بشأن ما له ديبي. لمعالجة هذه الفجوة في الأدب، وصفنا إطارا لتحديد التحيزات الموجودة في Adments Graph Admings، بناء على مقاييس BIAS الرقمية. نوضح الإطار بثلاث تدابير تحيز مختلفة حول مهمة التنبؤ بالمهنة، ويمكن امتدت بمرونة لتعريفات وتطبيقات إضافية. يمكن بعد ذلك تسليم العلاقات التي يتم تمييزها على أنها منحازة إلى صانعي القرار للحكم على الدخل اللاحق.
With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, and have proposed multiple methods for debiasing them. However, in such studies, the focus has been on debiasing techniques, while the relations to be debiased are specified manually by the user. As manual specification is itself susceptible to human cognitive bias, there is a need for a system capable of quantifying and exposing biases, that can support more informed decisions on what to debias. To address this gap in the literature, we describe a framework for identifying biases present in knowledge graph embeddings, based on numerical bias metrics. We illustrate the framework with three different bias measures on the task of profession prediction, and it can be flexibly extended to further bias definitions and applications. The relations flagged as biased can then be handed to decision makers for judgement upon subsequent debiasing.
المراجع المستخدمة
https://aclanthology.org/
يهدف كتابة كيان الرسم البياني للمعرفة إلى أن ينتج أنواع الكيانات المفقودة في الرسوم البيانية المعرفة التي تعد قضية مهمة ولكنها غير مستحقة.تقترح هذه الورقة طريقة رواية لهذه المهمة من خلال الاستفادة من المعلومات السياقية للكيانات.على وجه التحديد، نقوم
تصميم التمثيلات التعبيرية للكيانات والعلاقات في الرسم البياني المعرفي هو مسعى مهم. في حين أن العديد من الأساليب الحالية تركز بشكل أساسي على التعلم من الأنماط العلائقية والمعلومات الهيكلية، فقد تم تجاهل التعقيد الجوهري لكي كيانات KG أكثر أو أقل. بشكل
أصبحت الرسوم البيانية المعرفة (KGS) شعبية بشكل متزايد في السنوات الأخيرة. ومع ذلك، نظرا لأن المعرفة تنمو باستمرار وتغييرات، فمن المحتم أن تمتد KGS الموجودة مع الكيانات التي ظهرت أو أنها ذات صلة بنطاق كجم بعد إنشائها. تعتمد البحث في تحديث KGS عادة على
الفهم القراءة الآلة التفاعلية (IMRC) هو مهام فهم الجهاز حيث تكون مصادر المعرفة يمكن ملاحظتها جزئيا.يجب أن يتفاعل الوكيل مع بيئة بالتتابع لجمع المعرفة اللازمة من أجل الإجابة على سؤال.نحن نفترض أن تمثيلات الرسم البياني هي تحيزات حثي جيدة، والتي يمكن أن
تستخدم الرسوم البيانية المعرفة (KGS) على نطاق واسع لتخزين المعلومات والوصول إليها حول الكيانات وعلاقاتها.بالنظر إلى استفسار، تهدف مهمة استرجاع الكيانات من KG إلى تقديم قائمة في المرتبة ذات الصلة بالاستعلام.في الآونة الأخيرة، أظهر عدد متزايد من النماذ