ترغب بنشر مسار تعليمي؟ اضغط هنا

Muppet: تمثيلات مهام ضخمة متعددة مع Finetuning مسبقا

Muppet: Massive Multi-task Representations with Pre-Finetuning

241   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح بشكل مسبق، مرحلة تعليمية واسعة النطاق على نطاق واسع بين نموذج اللغة قبل التدريب والضبط بشكل جيد.ما قبل التأثيرات المسبقة للتعلم متعدد المهام على نطاق واسع (حوالي 50 مجموعة من مجموعات البيانات، أكثر من 4.8 مليون أمثلة كاملة المسمى)، وهي مصممة لتشجيع تعلم التمثيلات التي تعمم بشكل أفضل للعديد من المهام المختلفة.نظظ أننا نتحسن باستمرار بشكل ثابت على تحسين الأداء من أجل التمييز المسبق (مثل روبرتا) ونماذج الجيل (مثل بارت) على مجموعة واسعة من المهام (تنبؤ الحكم، ومنطق العمولة، وما إلى ذلك)، مع تحسين كفاءة العينة بشكل كبير بشكل كبير أثناء غرامة-ضبط.نظهر أيضا أن المهام المتعدد واسع النطاق أمر بالغ الأهمية؛يمكن أن تؤذي ما قبل الاستخدام مسبقا الأداء عند استخدام عدد قليل من المهام حتى نقطة حرجة (عادة أعلى من 15) بعد أن يحسن الأداء خطيا في عدد المهام.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مجردة لأنظمة معالجة اللغات الطبيعية، وهي نوعين من الأدلة تدعم استخدام تمثيلات نصية من نماذج اللغة العصبية المحددة "على الفوروريا غير المخلفات الكبيرة: الأداء على معايير مستوحاة من التطبيقات (بيترز وآخرون، 2018، في جملة أمور أخرى)، والظهور من التجريدا ت النحوية في تلك التمثيلات (Tenney et al.، 2019، في جملة أمور أخرى). من ناحية أخرى، فإن الافتقار إلى الإشراف الأساسي يدعو إلى المسائل مدى جودة هذه التمثيلات يمكن أن تلتقط المعنى (Bender and Koller، 2020). نحن نطبق تحقيقات جديدة إلى نماذج اللغة الأخيرة --- التركيز على وجه التحديد على هيكل الوسائد المسند على النحو الذي يتعرض عليه التبعيات الدلالية (إيفانوفا وآخرون، 2012) --- وإيجاد ذلك، على عكس بناء الجملة، لا يتم إحضار الدلالات إلى السطح من قبل اليوم نماذج مسبقا. بعد ذلك، نستخدم تشفير الرسومات التنافيلية لتشمل صراحة على التقييم الدلالي في الفوائد الخاصة بمهام المهام، وتحقيق فوائد العائد لمهام فهم اللغة الطبيعية (NLU) في معيار الغراء. يوضح هذا النهج إمكانية الإشراف اللغوي للأغراض العامة (بدلا من المهام الخاصة)، أعلاه وما يتجاوز الاحتجاج والتأمل التقليدي. تساعد العديد من التشخيص في توطين فوائد نهجنا
أصبحت السيارات التلقائية النصية النصية (VAES) سيئة السمعة بالنسبة للانهيار الخلفي، وهي ظاهرة حيث يتعلم وحدة فك ترميز النموذج أن تجاهل الإشارات من التشفير.نظرا لأنه من المعروف أن الانهيار الخلفي يتم تفاقمه من خلال أجهزة فك ترميز التعبير، فقد شهدت المح ولات اعتمادا محدودا كمكون مكونات في VAES النصية.الدراسات القائمة التي تضم المحولات في مبيعات النصوص (لي وآخرون، 2020؛ فانغ وآخرون.، 2021) تخفيف الانهيار الخلفي باستخدام محاولات ضخمة، وهي تقنية غير متوفرة لمعظم مجتمع البحث دون موارد حوسبة واسعة النطاق.نقدم خطة تدريبية بسيطة من مرحلتين لتحويل محول تسلسل إلى تسلسل إلى VIE مع Finetuning فقط.النموذج اللغوي الناتج هو تنافسية مع VAES المستندة إلى المحولات بشكل كبير في بعض المقاييس الداخلية مع الوقوع على الآخرين.لتسهيل التدريب، استكشفنا بشكل شامل تأثير تقنيات تخفيف الطيام الخلفي المشترك في الأدب.نطلق سرد كودنا للاستكشاف.
ندرس مشكلة جديدة في التعلم عبر التحويلات المتبادلة لحدث القرار (ECR) حيث يتم تكييف النماذج المدربة على البيانات من لغة مصدر للتقييمات باللغات المستهدفة المختلفة. نقدم النموذج الأساسي الأول لهذه المهمة بناء على نموذج لغة XLM-Roberta، وهو نموذج لغوي مت عدد اللغات مسبقا. نحن نستكشف أيضا الشبكات العصبية اللغوية اللغوية (LANN) التي تتولى التمييز بين النصوص من المصدر واللغات المستهدفة لتحسين تعميم اللغة ل ECR. بالإضافة إلى ذلك، نقدم آليتين رواية لتعزيز التعلم التمثيلي العام ل LANN، والتي تتميز بما يلي: (1) محاذاة متعددة الرؤية لمعاقبة محاذاة التسمية العاصمة من Aquerence من الأمثلة في المصدر واللغات المستهدفة، و (2) النقل الأمثل إلى حدد أمثلة وثيقة في المصدر واللغات المستهدفة لتوفير إشارات تدريبية أفضل لتمييز اللغة. أخيرا، نقوم بإجراء تجارب مكثفة ل ECR عبر اللغات من الإنجليزية إلى الإسبانية والصينية لإظهار فعالية الأساليب المقترحة.
نحن نبحث في التمثيلات التي تعلمناها عن طريق الرؤية ونماذج اللغة في المهام التي تتطلب التفكير العلائقي.مع التركيز على مشكلة تقييم الحجم النسبي للكائنات في السياقات البصرية مجردة، نحلل منطق واحد وخطوتين.بالنسبة لهذا الأخير، نبني مجموعة بيانات جديدة من مشاهد ثلاثية وتحدد مهمة تتطلب منطق على مستوى الصور الفردية وعبر الصور في مشهد.نحن نبذل تمثيلات النموذج المستفادة باستخدام مصنفات التشخيص.تظهر تجاربنا أن الهندسة المعاد المسبدة مسبقا القائمة على المحولات يمكن أن تؤدي من التفكير العلائقي المستوى الأعلى، وهي قادرة على تعلم تمثيلات المهام والبيانات الجديدة التي تختلف عن ما شوهد في الاحتجاج.
تصف هذه الورقة مساهمتنا في المهمة المشتركة Wassa 2021 بشأن التنبؤ بالمساءات وتصنيف العاطفة.كان الهدف الواسع لهذه المهمة هو نموذج درجة التعاطف، ونتيجة استغاثة والمستوى العام للعاطفة للمقال مكتوب استجابة لمقال الصحف المرتبطة بالأذى لشخص ما.لقد استخدمنا نموذج Electra بوفرة ونهج التعلم العميق المتقدمة أيضا مثل التعلم متعدد المهام.بالإضافة إلى ذلك، نحن أيضا الاستفادة من تقنيات تعلم الآلة القياسية مثل الكفر.يحقق نظامنا معامل ارتباط بيرسون من 0.533 في المهمة الفرعية الأولى ونتيجة ماكرو F1 من 0.5528 على المهمة الفرعية الثانية.احتلنا المرتبة الأولى في مهمة تصنيف العاطفة الفرعية والثالث في مهمة التنبؤ بالتعاطف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا