معظم أساليب تلخيص المستندات النسخة الاستخراجية الحالية (MDS) تسجل كل جملة بشكل فردي واستخراج الجمل الباردة واحدا تلو الآخر لتكوين ملخص، ولديه عاطفي رئيسيين: (1) إهمال العلاقات داخل الوثائق بين الجمل؛ (2) إهمال التماسك وجواء الملخص بأكمله. في هذه الورقة، نقترح إطار عمل MDS الرواية (SGSUM) لصياغة مهمة MDS كأداة اختيار Sub-Graph، حيث تعتبر المستندات المصدر بيانيا العلاقة من الجمل (على سبيل المثال، الرسم البياني التشابه أو الرسم البياني الخطابي) والمرشح الملخصات هي الرسوم البيانية الفرعية لها. بدلا من اختيار الجمل البارزة، حدد SGSUM رسم بياني فرعي بارز من الرسم البياني العلاقة كملخص. مقارنة بالطرق التقليدية، فإن طريقةنا لها مزايا رئيسية: (1) يتم التقاط العلاقات بين الأحكام من خلال نمذجة كل من هيكل الرسم البياني لمجموعة الوثيقة بأكملها والرسوم البيانية الفرعية المرشحة؛ (2) يخرج مباشرة ملخصا دمج في شكل رسم بياني فرعي وهو أكثر إفادة وتماسك. تظهر تجارب واسعة على مجموعات بيانات متعددة الوظائف و DUC أن أسلوبنا المقترح يجلب تحسينات كبيرة على العديد من خطوط الأساس القوية. توضح نتائج التقييم البشري أيضا أن طرازنا يمكن أن ينتج ملخصات أكثر متماسكا وكفاحيا مقارنة بطرق MDS التقليدية. علاوة على ذلك، فإن الهندسة المعمارية المقترحة لديها قدرة نقل قوية من إدخال واحد إلى متعدد الوثائق، والتي يمكن أن تقلل من عنق الزجاجة في مهام MDS.
Most of existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary, which have two main drawbacks: (1) neglecting both the intra and cross-document relations between sentences; (2) neglecting the coherence and conciseness of the whole summary. In this paper, we propose a novel MDS framework (SgSum) to formulate the MDS task as a sub-graph selection problem, in which source documents are regarded as a relation graph of sentences (e.g., similarity graph or discourse graph) and the candidate summaries are its sub-graphs. Instead of selecting salient sentences, SgSum selects a salient sub-graph from the relation graph as the summary. Comparing with traditional methods, our method has two main advantages: (1) the relations between sentences are captured by modeling both the graph structure of the whole document set and the candidate sub-graphs; (2) directly outputs an integrate summary in the form of sub-graph which is more informative and coherent. Extensive experiments on MultiNews and DUC datasets show that our proposed method brings substantial improvements over several strong baselines. Human evaluation results also demonstrate that our model can produce significantly more coherent and informative summaries compared with traditional MDS methods. Moreover, the proposed architecture has strong transfer ability from single to multi-document input, which can reduce the resource bottleneck in MDS tasks.
المراجع المستخدمة
https://aclanthology.org/