ترغب بنشر مسار تعليمي؟ اضغط هنا

D2S: توليد المستندات إلى الشريحة عبر تلخيص النص المستند إلى الاستعلام

D2S: Document-to-Slide Generation Via Query-Based Text Summarization

322   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

العروض التقديمية مهمة للتواصل في جميع مجالات حياتنا، ومع ذلك فإن إنشاء الطوابق الشريحة غالبا ما تكون مملة وتستهلك الوقت.كان هناك بحث محدود يهدف إلى أتمتة عملية توليد المستندات إلى الشرائح وجميع مواجهة التحدي الحرج: لا توجد مجموعة بيانات متاحة للجمهور للتدريب والمعايير.في هذا العمل، فإننا نساهم أولا في مجموعة بيانات جديدة، Sciduet، تتكون من أزواج من الأوراق وحوابق الشرائح المقابلة من مؤتمرات NLP و ML الأخيرة (E.G.، ACL).ثانيا، نقدم D2S، وهو نظام جديد يتناول مهمة المستندات إلى الشرائح مع نهج من خطوتين: 1) استخدم عناوين الشريحة لاسترداد النص والأرقام والجشطة ذات الصلة والجاذبية؛2) لخص السياق المسترجع في نقاط رصاصة مع الإجابة على سؤال طويل الشكل.يشير تقييمنا إلى أن ضميز ضمنيا طويل النموذج يتفوق على خطوط الأساس الملخص لحدي الفن على كل من مقاييس الحمر التلقائي والتقييم البشري النوعي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

إن السماح للمستخدمين بالتفاعل مع الملخصات المتعددة المستندات هو اتجاه واعد نحو تحسين وتخصيص النتائج الموجزة. تم اقتراح أفكار مختلفة للتلخيص التفاعلي في العمل السابق، لكن هذه الحلول متباينة للغاية ولا تضاهى. في هذه الورقة، نقوم بتطوير إطار تقييم نهاية إلى نهائي للتلخيص التفاعلي، مع التركيز على التفاعل القائم على التوسع، الذي يعتبر تتراكم المعلومات على طول جلسة مستخدم. يتضمن إطار عملنا إجراءات لجمع دورات المستخدم الحقيقية، وكذلك تدابير التقييم التي تعتمد على معايير تلخيص، ولكنها تتكيف مع تعكس التفاعل. جميع حلولنا ومواردنا متوفرة علنا ​​كمعيار، مما يسمح بمقارنة التطورات المستقبلية في تلخيص تفاعلي، وتحفز تقدم في تقييمها المنهجي. نوضح استخدام إطار العمل لدينا من خلال تقييم ومقارنة تطبيقات خط الأساس التي طورنا لهذا الغرض، والتي ستكون بمثابة جزء من معيارنا. تحفيز تجاربنا الواسعة وتحليلنا تصميم إطار التقييم المقترح ودعم صلاحيته.
تبنت النهج الحديثة التجريدية لجيل النص إلى النص بنية فك التشفير الناجحة للغاية أو المتغيرات منها.تولد هذه النماذج نصا يجيد (ولكن في كثير من الأحيان غير دقيقة) وإجراء سيئة للغاية عند تحديد المحتوى المناسب وطلبه بشكل متماسك.للتغلب على بعض هذه القضايا، نقترح نموذجا عصبا بمرحلة تخطيط ماكرو تذكرنا مرحلة جيل تذكرنا بالطرق التقليدية التي تعتنق وحدات منفصلة للتخطيط وإعمال السطح.تمثل خطط الماكرو تنظيما رفيع المستوى للمحتوى الهام مثل الكيانات والأحداث وتفاعلاتها؛يتم تعلمهم من البيانات وإتاحة كمدخلات للمولد.تبين تجارب واسعة على معايير بيانات إلى نصية (Rotowire و MLB) أن نهجنا يتفوق على خطوط أساس تنافسية من حيث التقييم التلقائي والبشري.
معظم أساليب تلخيص المستندات النسخة الاستخراجية الحالية (MDS) تسجل كل جملة بشكل فردي واستخراج الجمل الباردة واحدا تلو الآخر لتكوين ملخص، ولديه عاطفي رئيسيين: (1) إهمال العلاقات داخل الوثائق بين الجمل؛ (2) إهمال التماسك وجواء الملخص بأكمله. في هذه الور قة، نقترح إطار عمل MDS الرواية (SGSUM) لصياغة مهمة MDS كأداة اختيار Sub-Graph، حيث تعتبر المستندات المصدر بيانيا العلاقة من الجمل (على سبيل المثال، الرسم البياني التشابه أو الرسم البياني الخطابي) والمرشح الملخصات هي الرسوم البيانية الفرعية لها. بدلا من اختيار الجمل البارزة، حدد SGSUM رسم بياني فرعي بارز من الرسم البياني العلاقة كملخص. مقارنة بالطرق التقليدية، فإن طريقةنا لها مزايا رئيسية: (1) يتم التقاط العلاقات بين الأحكام من خلال نمذجة كل من هيكل الرسم البياني لمجموعة الوثيقة بأكملها والرسوم البيانية الفرعية المرشحة؛ (2) يخرج مباشرة ملخصا دمج في شكل رسم بياني فرعي وهو أكثر إفادة وتماسك. تظهر تجارب واسعة على مجموعات بيانات متعددة الوظائف و DUC أن أسلوبنا المقترح يجلب تحسينات كبيرة على العديد من خطوط الأساس القوية. توضح نتائج التقييم البشري أيضا أن طرازنا يمكن أن ينتج ملخصات أكثر متماسكا وكفاحيا مقارنة بطرق MDS التقليدية. علاوة على ذلك، فإن الهندسة المعمارية المقترحة لديها قدرة نقل قوية من إدخال واحد إلى متعدد الوثائق، والتي يمكن أن تقلل من عنق الزجاجة في مهام MDS.
أدت التطورات الأخيرة في الشبكات العصبية إلى التقدم في توليد البيانات إلى النص.ومع ذلك، فإن الافتقار إلى قدرة النماذج العصبية للسيطرة على هيكل الإخراج الذي تم إنشاؤه يمكن أن يحد في بعض تطبيقات العالم الحقيقي.في هذه الدراسة، نقترح إطارا جديدا لخطة الرو اية (Plangen) لتحسين قابلية تحكم نماذج البيانات النصية العصبية.يتم إجراء تجارب واسعة من التجارب والتحليلات على مجموعة من مجموعات البيانات القياسية، Totto و Webnlg.تظهر النتائج أن نموذجنا قادر على التحكم في كل من الجملة داخل الجملة وبنية الجملة بين الإخراج الناتج.علاوة على ذلك، تظهر المقارنات التجريبية ضد الأساليب السابقة من الأساليب السابقة أن نموذجنا يحسن جودة التوليد وكذلك تنوع الإخراج عند الحكم على التقييمات البشرية والآلية.
إحدى التحديات في استرجاع المعلومات (IR) هي مشكلة عدم تطابق المفردات، والتي تحدث عندما تكون الشروط بين الاستفسارات والمستندات مختلفة بشكل جذابي ولكنها مماثلة دلالة. في حين اقترح العمل الحديث توسيع الاستعلامات أو المستندات من خلال إثراء تمثيلاتها مع مص طلحات ذات صلة إضافية لمعالجة هذا التحدي، فإنها عادة ما تتطلب حجم كبير من أزواج المستندات لتدريب نموذج التوسع. في هذه الورقة، نقترح توسيع مستندات غير محفوظة مع إطار عمل جيل (UDEG) مع نموذج لغة مدرب مسبقا، مما يولد جمل تكميلية متنوعة للمستند الأصلي دون استخدام تسميات على أزواج المستندات للاستعلام للتدريب. لتوليد الجمل، فإننا ناضطنا بشكل غير منتفضل بإداراتهم لتوليد جمل أكثر تنوعا للتوسع المستند. نحن نتحقق من صحة إطار عملائنا على مجموعة بيانات القياسية القياسية. تظهر النتائج أن إطارنا يتفوق بشكل كبير على خطوط الأساس التوسع ذات الصلة إلى الأشعة تحت الحمراء.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا