ترغب بنشر مسار تعليمي؟ اضغط هنا

الاستدلال العاطفة في محادثات متعددة الدورات مع الوحدة النمطية المفيدة واستراتيجية الفرقة

Emotion Inference in Multi-Turn Conversations with Addressee-Aware Module and Ensemble Strategy

341   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تهدف الاستدلال العاطفة في المحادثات متعددة الدورات إلى التنبؤ بمشاعر المشارك في الدور التالي المقبل دون معرفة استجابة المشارك بعد، وهي خطوة ضرورية للتطبيقات مثل تخطيط الحوار. ومع ذلك، فإن التحدي الشديد لإدراك وسبب مشاعر المشاركين في المستقبل، بسبب عدم وجود معلومات عن المستقبل من المستقبل. علاوة على ذلك، فمن الضروري استنتاج المشاعر لالتقاط خصائص الانتشار العاطفي في المحادثات، مثل الثبات والمعاجين. في هذه الدراسة، نركز على التحقيق في مهمة استنتاج المشاعر في محادثات متعددة الدورات من خلال نمذجة انتشار الدول العاطفية بين المشاركين في تاريخ المحادثة، واقتراح وحدة نمط تدرك المرسل إليه تلقائيا ما إذا كان المشارك يحتفظ الحالة العاطفية التاريخية أو تتأثر بالآخرين في المنعطف القادم المقبل. بالإضافة إلى ذلك، نقترح استراتيجية فرقة لتعزيز الأداء النموذجي. تظهر الدراسات التجريبية على ثلاث مجموعات محادثة محادثة مختلفة مختلفة فعالية النموذج المقترح على العديد من خطوط الأساس القوية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أظهرت نماذج اختيار الاستجابة متعددة الدوران مؤخرا أداء مماثل للبشر في العديد من البيانات القياسية.ومع ذلك، في البيئة الحقيقية، غالبا ما تحتوي هذه النماذج على نقاط ضعف، مثل اتباع تنبؤات غير صحيحة تستند بشكل كبير على الأنماط السطحية دون فهم شامل للسياق .على سبيل المثال، غالبا ما تعطي هذه النماذج درجات عالية مرشحة للاستجابة الخاطئة التي تحتوي على العديد من الكلمات الرئيسية المتعلقة بالسياق ولكن باستخدام المضارع غير المتناقص.في هذه الدراسة، نقوم بتحليل نقاط الضعف في نماذج اختيار استجابة الاستجابة الكورية من هذا المجال ونشر مجموعة بيانات الخصومة لتقييم هذه نقاط الضعف.نقترح أيضا استراتيجية لبناء نموذج قوي في هذه البيئة الخصومة.
أصبح التعرف على العاطفة في محادثة متعددة الأحزاب (ermc) شعبية بشكل متزايد كقاعدة بحثية ناشئة في معالجة اللغة الطبيعية.يركز البحث المسبق على استكشاف معلومات متتابعة ولكن يتجاهل هياكل المحادثات.في هذه الورقة، يمكننا التحقيق في أهمية هياكل الخطاب في الت عامل مع الإشارات السياقية الإعلامية والمعلومات الخاصة بالمتكلات الخاصة ب armc.تحقيقا لهذه الغاية، نقترح علما رسميا في رسم بياني (ERMC-DISGCN) ل ERMC.على وجه الخصوص، نقوم بتصميم الأزلاء العلائقية إلى رافعة تبعية المتكلم الذاتي للواقعاء نشر معلومات سياقية.علاوة على ذلك، فإننا نستنفذ عن مراقبة بوابات لاختيار إشارات أكثر إفادة ل armc من التحويلات المعالين.تظهر النتائج التجريبية طريقة أن أسلوبنا تتفوق على خطوط أساس متعددة، مما يوضح أن هياكل الخطاب ذات قيمة كبيرة ل armc.
تعد بيانات المعرفة هائلة وواسعة الانتشار في العالم الحقيقي، والتي يمكن أن تكون بمثابة مصادر خارجية جيدة لإثراء المحادثات. ومع ذلك، في محادثات المعرفة، لا تزال النماذج الحالية تفتقر إلى السيطرة الجميلة على اختيار المعرفة والتكامل مع الحوارات، والتي تؤ دي أخيرا إلى مشاكل توليد الاستجابة غير ذات الصلة المعرفة: 1) اختيار المعرفة يعتمد فقط على سياق الحوار، وتجاهل انتقالات المعرفة المتأصلة جنبا إلى جنب مع تدفقات المحادثة؛ 2) غالبا ما تناسب النماذج أثناء التدريب، مما يؤدي إلى استجابة غير متماسكة من خلال الإشارة إلى الرموز غير المرتبطة من محتوى المعرفة المحددة في مرحلة الاختبار؛ 3) على الرغم من أن الاستجابة يتم إنشاؤها على تاريخ الحوار والمعرفة، إلا أن النماذج غالبا ما تميل إلى التغاضي عن المعرفة المحددة، وبالتالي يولد استجابة المعرفة غير ذات الصلة. لمعالجة هذه المشكلات، اقترحنا نموذجي صراحة انتقال المعرفة في محادثات متعددة الدورانية المتسلسلة عن طريق تجريد المعرفة إلى علامات موضوعية. بالإضافة إلى ذلك، لاستخدام المعرفة المختارة بالكامل في عملية التوليد، نقترح ما قبل التدريب مولد الاستجابة على علم المعرفة لدفع المزيد من الاهتمام على المعرفة المحددة. على وجه الخصوص، يقوم نموذج انتقال المعرفة المتسلسل المزود بمولد استجابة مدروس مدرسي مسبقا (SKT-KG) بتصوير انتقال المعرفة الرفيع المستوى ويستخدم بالكامل بيانات المعرفة المحدودة. تشير النتائج التجريبية على كل من معايير الحوار المنظم وغير المنظمة إلى المعرفة المعرفة إلى أن نموذجنا يحقق أداء أفضل على النماذج الأساسية.
تصنيف العاطفة متعددة العلامات هو مهمة مهمة في NLP وهي ضرورية للعديد من التطبيقات.في هذا العمل، نقترح نهج التسلسل إلى العاطفة (SEQ2EMO)، الذي نماذج ضمنيا علاقات العاطفة في وحدة فك ترميز ثنائية الاتجاه.تظهر التجارب في مجموعات بيانات Semeval'18 و Goemot ions أن نهجنا تتفوق على الأساليب الحديثة (دون استخدام البيانات الخارجية).على وجه الخصوص، يتفوق SEQ2EMO على نهج السلسلة ذات الصلة الثنائية (BR) وسلسلة التصنيف (CC) في بيئة عادلة.
التركيز النهج الحالية لتوليد الاستجابة المتعاطفة على تعلم نموذج للتنبؤ بميزة العاطفة وتوليد استجابة بناء على هذه الملصق وحققت نتائج واعدة. ومع ذلك، فإن السبب العاطفي، وهو عامل أساسي للاستجابة التعاطفية، يتم تجاهله. السبب العاطفة هو حافز للعواطف البشر ية. وإذ تدرك سبب العاطفة مفيدة لفهم المشاعر الإنسانية بشكل أفضل حتى تولد ردود أكثر تعاطفا. تحقيقا لهذه الغاية، نقترح إطارا جديدا يحسن توليد الاستجابة المتعاطفة من خلال التعرف على سبب العاطفة في المحادثات. على وجه التحديد، تم تصميم العاطفة المعقرة للتنبؤ بتسمية مشاعر السياق وتسلسل من الملصقات الموجهة نحو السبب، والتي تشير إلى ما إذا كانت الكلمة مرتبطة بالعاطفة. ثم نركض كلا من آليات الاهتمام الثابت والناعم لدمج السبب في جيل الاستجابة. تظهر التجارب أن دمج العاطفة تسبب المعلومات تعمل على تحسين أداء النموذج على كل من التعرف على العاطفة وتوليد الاستجابة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا