ترغب بنشر مسار تعليمي؟ اضغط هنا

SEQ2EMO: تسلسل إلى نموذج تصنيف العاطفة متعددة العلامات

Seq2Emo: A Sequence to Multi-Label Emotion Classification Model

524   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تصنيف العاطفة متعددة العلامات هو مهمة مهمة في NLP وهي ضرورية للعديد من التطبيقات.في هذا العمل، نقترح نهج التسلسل إلى العاطفة (SEQ2EMO)، الذي نماذج ضمنيا علاقات العاطفة في وحدة فك ترميز ثنائية الاتجاه.تظهر التجارب في مجموعات بيانات Semeval'18 و Goemotions أن نهجنا تتفوق على الأساليب الحديثة (دون استخدام البيانات الخارجية).على وجه الخصوص، يتفوق SEQ2EMO على نهج السلسلة ذات الصلة الثنائية (BR) وسلسلة التصنيف (CC) في بيئة عادلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف الكشف عن العلاقات متعددة القفزات في أسئلة المعرفة الإجابة (KBQA) إلى استرجاع مسار العلاقة بدءا من كيان الموضوع إلى عقدة الإجابة بناء على سؤال معين، حيث قد يشتمل مسار العلاقة على علاقات متعددة. تعامل معظم الأساليب الموجودة بمثابة مشكلة في تعلم ال علامة الفردية مع تجاهل حقيقة أنه بالنسبة لبعض الأسئلة المعقدة، توجد مسارات علاقة صحيحة متعددة في قواعد المعرفة. لذلك، في هذه الورقة، يعتبر اكتشاف العلاقة المتعددة القفز مشكلة في التعلم متعدد العلامات. ومع ذلك، فإن إجراء اكتشاف علاقة متعددة الأقفز متعددة الملصقات يمثل تحديا لأن أعداد كل من الملصقات والقفزات غير معروفة. لمعالجة هذا التحدي، يتم صياغة الكشف المتعدد الملصقات متعددة القفز كهجوم توليد التسلسل. يقترح نموذج توليد علاقات العلاقة بين العلاقة على حل المشكلة بطريقة نهاية إلى نهاية. تظهر النتائج التجريبية فعالية الطريقة المقترحة للكشف عن العلاقة و KBQA.
تحتوي المهام القياسية الحالية لمعالجة اللغة الطبيعية على نص مختلف عن النص المستخدم في اليومي غير الرسمي إلى الاتصال الرقمي اليومي. أدى هذا التناقض إلى تدهور الأداء الشديد لنماذج NLP الحديثة عندما يتم ضبطها بشكل جيد على بيانات العالم الحقيقي. طريقة وا حدة لحل هذه المشكلة هي من خلال التطبيع المعجمي، وهي عملية تحويل النص غير القياسي، وعادة ما تكون من وسائل التواصل الاجتماعي، إلى نموذج أكثر موحدة. في هذا العمل، نقترح نموذج تسلسل تسلسل على مستوى الجملة بناء على MBART، مما يؤدي إلى إطارات المشكلة بمثابة مشكلة ترجمة آلية. نظرا لأن النص الصاخب يمثل مشكلة منتشرة عبر اللغات، وليس الإنجليزية فقط، فإننا نستفيد من التدريب المسبق متعدد اللغات ل MBART لضبطه إلى بياناتنا. في حين أن الأساليب الحالية تعمل بشكل رئيسي على مستوى الكلمة أو الكلمات الفرعية، فإننا نجادل بأن هذا النهج واضح واضح من وجهة نظر تقنية ويبني على شبكات المحولات الموجودة مسبقا. تظهر نتائجنا أنه في حين أن مستوى الكلمة، جوهري، فإن تقييم الأداء هو وراء الطرق الأخرى، فإن نموذجنا يحسن الأداء على مهام خارجية ومصمبة من خلال التطبيع مقارنة بالنماذج التي تعمل على نص وسائل التواصل الاجتماعي الخام وغير المجهزة.
يتضمن تصنيف النص متعدد العلامات واسعة النطاق (LMTC) مهام مع مسافات تسمية هرمية، مثل التعيين التلقائي لرموز ICD-9 إلى ملخصات التفريغ.يتم تقييم أداء النماذج في الفن السابق مع تدابير الدقة القياسية والتذكر و F1 دون اعتبار للهيكل الهرمي الغني.في هذا العم ل، نقول بتقييم هرمي لتنبؤات نماذج LMTC العصبية.مع مثال على علم ICD-9 ontology، نصف مشكلة هيكلية في تمثيل مساحة الملصقات المهيكلة في الفنية السابقة، واقتراح تمثيل بديل بناء على عمق OnTology.نقترح مجموعة من مقاييس التقييم الهرمي باستخدام التمثيل القائم على العمق.قارن درجات التقييم من المقاييس المقترحة مع مقاييس تستخدم سابقا على نماذج LMTC السابقة لترميز ICD-9 في MIMIC-III.كما نقترح أيضا طرق البحث الأخرى التي تنطوي على التمثيل الترطاني المقترح.
كلمات الأغاني تنقل العديد من المشاعر إلى المستمع وصور بقوة الحالة العاطفية للكاتب أو المغني.يفحص هذه الورقة مجموعة متنوعة من نهج النمذجة لمشكلة تصنيف متعددة العاطفة للأغاني.نقدم DataSet DataSet Edmonds DataSet، وهي كلمات بيانات كلمات مشفخة عن العاطفة من منظور القارئ، وتعليق DataSet of Mihalcea و Stripparava (2012) على مستوى الأغنية.نجد أن النماذج المدربة على مجموعات بيانات الأغنية الصغيرة نسبيا تحقق أداء أفضل بشكل هامشي من بيرت (ديفلين وآخرون)
يعمل المصنف الموجود في مهام الحوسبة العاطفية متعددة الوسائط، مثل التعرف على العاطفة والتعرف على الشخصية، عموما خط أنابيب ذات مرحلتين من خلال أول استخراج تمثيلات ميزة لكل طريقة واحدة مع الخوارزميات المصنوعة يدويا، ثم أداء التعلم المنتهي مع الميزات الم ستخرجة. ومع ذلك، يتم إصلاح الميزات المستخرجة ولا يمكن ضبطها بشكل جيد على المهام المستهدفة المختلفة، والعثور على ميزة خوارزميات الاستخراج يدويا لا تعميم أو مقياس جيدا لمهام مختلفة، والتي يمكن أن تؤدي إلى الأداء دون الأمثل. في هذه الورقة، نقوم بتطوير نموذج طرف بالكامل يربط المرحلتين وتحسينها بشكل مشترك. بالإضافة إلى ذلك، نقوم بإعادة هيكلة مجموعات البيانات الحالية لتمكين التدريب الكامل للنهاية. علاوة على ذلك، لتقليل النفقات الحاسوبية النماذج المحسوبة بالنماذج الطرفية إلى النهاية، نقدم آلية اهتمامية متناثرة عبر مشروط لاستخراج الميزة. تظهر النتائج التجريبية أن طرازنا الناتج الكامل ينفج بشكل كبير يتفوق بشكل كبير النماذج الحالية للحالة القائمة على خط أنابيب الطورين. علاوة على ذلك، من خلال إضافة اهتمام متناثر عبر الوسائط، يمكن لنموذجنا الحفاظ على الأداء مع حوالي نصف حساب أقل في جزء استخراج الميزة من النموذج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا