أظهرت الدراسات الحديثة أن النماذج العميقة العصبية المستندة إلى الشبكة المعرضة للأمثلة المصنوعة عن قصد، ويقترح أساليب مختلفة للدفاع ضد هجمات استبدال الكلمات العدائية لنماذج NLP العصبية. ومع ذلك، هناك نقص في الدراسة المنهجية حول مقارنة النهج الدفاعية المختلفة بموجب نفس الإعداد الهجومية. في هذه الورقة، نسعى إلى ملء فجوة الدراسات المنهجية من خلال أبحاث شاملة بشأن فهم سلوك مصنفات النص العصبي المدربين من قبل طرق دفاعية مختلفة بموجب هجمات المشدلات التمثيلية. بالإضافة إلى ذلك، نقترح طريقة فعالة لزيادة تحسين متانة المصنفات النصية العصبية ضد هذه الهجمات، وحققت أعلى دقة على كل من الأمثلة النظيفة والمنعدة على مجموعات بيانات Agnews و IMDB بمهامش مهم. نأمل أن توفر هذه الدراسة أدلة مفيدة للبحث في المستقبل على الدفاع المشددي النصي. تتوفر الرموز في https://github.com/rockylzy/textdefender.
Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما تنطوي النماذج الحسابية للغة البشرية على مشاكل في الحركة. على سبيل المثال، قد تهميش محلل احتمامي على العديد من الأشجار بشكل كبير لجعل التنبؤات. غالبا ما تستخدم الخوارزميات لمثل هذه المشكلات البرمجة الديناميكية وليست فريدة من نوعها دائما. يمكن
تعد نماذج معالجة وأمن معالجة اللغة الطبيعية (NLP) مهمة بشكل ملحوظ في تطبيقات العالم الحقيقي. في سياق مهام تصنيف النص، يمكن تصميم أمثلة الخصومة من خلال استبدال الكلمات مع المرادفات تحت بعض القيود الدلالية والمنظمات الأساسية، بحيث يكون نموذج مدرب جيدا
نقترح أول هجوم مقاوم للتدرج على المستوى العام على نماذج المحولات.بدلا من البحث عن مثال خصم واحد، نبحث عن توزيع الأمثلة الخصومة المعلمة بواسطة مصفوفة مستمرة قيمة، وبالتالي تمكين التحسين المستندة إلى التدرج.إننا نوضح تجريبيا أن هجومنا الأبيض الخاص بنا
لقد أظهرت الأدوات الحديثة الأخيرة أن نماذج تعلم الرسم البياني المعرفي (KG) عرضة للغاية للهجمات الخصومة.ومع ذلك، لا تزال هناك ندرة من تحليلات الضعف لمحاذاة الكيان المتبادلة تحت هجمات الخصومة.تقترح هذه الورقة نموذج هجوم مخدر مع تقنيات هجومين جديدة لإشر
تعد Word Embeddings مكونا أساسيا لأنظمة معالجة اللغة الطبيعية الحديثة، مما يجعل القدرة على تقييمها بدقة مهمة حيوية. نحن تصف ديسكوتس، معيار للتقييم الجوهري للكلمة العربية الجدلية. يغطي ديسكليكس خمسة لهجات عربية مهمة: جزائري، مصري، لبناني، سوري، وتونسي