ترغب بنشر مسار تعليمي؟ اضغط هنا

هجمات المخادتين المستندة إلى التدرج ضد محولات النص

Gradient-based Adversarial Attacks against Text Transformers

271   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح أول هجوم مقاوم للتدرج على المستوى العام على نماذج المحولات.بدلا من البحث عن مثال خصم واحد، نبحث عن توزيع الأمثلة الخصومة المعلمة بواسطة مصفوفة مستمرة قيمة، وبالتالي تمكين التحسين المستندة إلى التدرج.إننا نوضح تجريبيا أن هجومنا الأبيض الخاص بنا يصل إلى أداء الهجوم الحديثة في مجموعة متنوعة من المهام اللغوية الطبيعية، مما يتفوق على العمل السابق من حيث معدل النجاح العديي مع مطابقة غير محسنة حسب التقييم الآلي والبشري.علاوة على ذلك، نظير على أن هجوم قوي عبر الصندوق الأسود، تم تمكينه بواسطة أخذ العينات من التوزيع العديزي أو يطابق أو يتجاوز الطرق الحالية، في حين يتطلب فقط مخرجات التسمية الصعبة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الشبكات العصبية العميقة عرضة للهجمات الخصومة، حيث اضطراب صغير في المدخل يغير التنبؤ النموذجي.في كثير من الحالات، يمكن أن تخدع المدخلات الخبيثة عن قصد لنموذج واحد نموذج آخر.في هذه الورقة، نقدم الدراسة الأولى للتحقيق بشكل منهجي في تحويل أمثلة الخصومة ب شكل منهجي لنماذج تصنيف النص واستكشاف كيفية تأثير مختلف العوامل، بما في ذلك بنية الشبكة، نظام التكتلات، وإدماج الكلمات، والقدرة النموذجية، على تحويل أمثلة الخصومة.بناء على هذه الدراسات، نقترح خوارزمية وراثية للعثور على مجموعة من النماذج التي يمكن استخدامها لتحفيز أمثلة الخصومة لخداع جميع النماذج الحالية تقريبا.تعكس هذه الأمثلة المخدرة عيوب عملية التعلم وتحيز البيانات في مجموعة التدريب.أخيرا، نحن نستمد قواعد استبدال الكلمات التي يمكن استخدامها لتشخيصات النموذج من هذه الأمثلة الخصومة.
اكتسبت أنظمة تلخيص الجماع العصبي تقدما كبيرا في السنوات الأخيرة.ومع ذلك، غالبا ما تنتج تلخيص التلوث في كثير من الأحيان بيانات غير متناسقة أو حقائق كاذبة.كيفية توليد الملخصات التجريدية بشكل كبير تلقائيافي هذه الورقة، اقترحنا نهجا فعالا معزز بيانات تكب ير البيانات الفعالة لتشكيل مجموعة بيانات الاتساق الواقعية.بناء على مجموعة البيانات الاصطناعية، ندرب نموذجا للتقييم التي لا يمكن أن تجعل تمييز التناسق الواقعي الدقيق والقوي فحسب، بل قادرا أيضا على جعل الأخطاء الواقعية القابلة للتفسير تتبعها توزيع التدرج السابق على توزيع الرمز المميز.توضح إجراء التجارب والتحليل في ملخصات التلخيص المشروح العام ومجموعات بيانات الاتساق واقعية نهجنا فعال ومعقول.
اللغة المكتوبة تحمل تحيزات صريحة وتضيعة يمكن أن تصرفت عن إشارات ذات مغزى. على سبيل المثال، قد تصف خطابات المرجعية المرشحين الذكور والإناث بشكل مختلف، أو قد تكشف أسلوب الكتابة الخاصة بهم بشكل غير مباشر عن الخصائص الديموغرافية. في أحسن الأحوال، يصرف مث ل هذه التحيزات عن المحتوى المجدي للنص؛ في أسوأ الأحوال يمكن أن تؤدي إلى نتائج غير عادلة. نحن نبحث في تحدي إعادة توليد جمل مدخلات لتحييد "السمات الحساسة" مع الحفاظ على المعنى الدلالي للنص الأصلي (E.G. هو المرشح المؤهل؟). نقترح إطار إعادة كتابة واستنادا في التدرج، والكشف عن وإقلاده لتحييد (DEPEN)، الذي يكتشف أولا مكونات حساسة ويخفيهن من أجل التجديد، ثم يزعج نموذج الجيل عند فك تشفير الوقت تحت قيد تحييد يدفع التوزيع (المتوقع) سمات نحو توزيع موحد. تظهر تجاربنا في سيناريوهات مختلفة أن DEPEN يمكن أن تجدد البدائل الطوفية محايدة في السمة الحساسة مع الحفاظ على دلالات السمات الأخرى.
يعتبر التعلم العميق القلب النابض للذكاء الصنعي في السنوات الأخيرة، وفي ظل تراوح تطبيقاته بين السيارات ذاتية القيادة وصولًا إلى التحليلات الطبية وغير ذلك، وقدرته على حل المشاكل المعقدة متفوقًا على الإنسان في الكثير من الأحيان، بدا أننا وصلنا للحل النه ائي لمشاكل الذكاء الصنعي، لكن ظهور الهجمات الخادعة أصبح العائق الأساسي لتوظيف التطبيقات التي تعتمد على التعلم العميق كبديل للإنسان، وأصبح التطبيقات الأخيرة تحت المجهر لدراسة قدرتها على منع هذه الهجمات، نستعرض في هذا البحث تعريف الهجوم الخادع وطرقه بشكل عام، ثم نتطرق إلى تطبيقين محورين يمكن مهاجمتهما من خلاله ونعرض كيف نتصدى لهذه الهجمات، مرورًا بمقارنة النماذج الإحصائية مع الإنسان وكون الهجمات الخادعة جزءًا أساسيًا من الأنظمة التي تعتمد على المعطيات للقيام بمهامها.
أظهر العمل الحديث مدى ضعف مصنف النصوص الحديثة للهجمات الخصومة العالمية، والتي هي تسلسل مدخلات غير مرغقة من الكلمات المضافة إلى النص المصنوع من قبل المصنفين. على الرغم من أن تكون ناجحة، فإن تسلسل الكلمات المنتجة في هذه الهجمات غالبا ما تكون غير رسمية ويمكن تمييزها بسهولة عن النص الطبيعي. نقوم بتطوير هجمات عدائية تظهر أقرب إلى عبارات اللغة الإنجليزية الطبيعية وحتى الآن أنظمة التصنيف عند إضافتها إلى المدخلات الحميدة. نحن نستفيد من AutoNCoder المنعصنة (ARAE) لتوليد المشغلات واقتراح بحث يستند إلى التدرج يهدف إلى زيادة فقدان تنبؤ التنبؤ بالتنبؤ في المصب. تقلل هجماتنا بشكل فعال دقة النموذج على مهام التصنيف مع كونها أقل تحديدا من النماذج السابقة وفقا لمقاييس الكشف التلقائي والدراسات البشرية. هدفنا هو إثبات أن الهجمات المشنة يمكن أن تكتشف أكثر صعوبة مما كان يعتقد سابقا وتمكين تطوير الدفاعات المناسبة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا