أحدث دراسات لاستخراج العلاقات (إعادة) الاستفادة من شجرة التبعية من جملة الإدخال لإدماج المعلومات السياقية التي يحركها بناء الجملة لتحسين الأداء النموذجي، مع القليل من الاهتمام المدفوع للقيود حيث محلل التبعية عالية الجودة في معظم الحالات غير متوفرة، خاصة في سيناريوهات البناء. لمعالجة هذا القيد، في هذه الورقة، نقترح شبكات اتصال بياني اختصاصية (A-GCN) لتحسين الأساليب العصبية بطريقة غير مرئية لبناء الرسم البياني للسياق، دون الاعتماد على وجود محلل التبعية. على وجه التحديد، نقوم بإنشاء الرسم البياني من N-Grams المستخرجة من معجم مبني من المعلومات المتبادلة غير التاريخية (PMI) وتطبيق الانتباه عبر الرسم البياني. لذلك، يتم مرجح أزواج كلمة مختلفة من السياقات داخل وعبر N-Grams في النموذج وتسهيل إعادة استخدامها وفقا لذلك. النتائج التجريبية مع المزيد من التحليلات على مجموعات بيانات قياسية باللغة الإنجليزية لإظهار فعالية نهجنا، حيث يلاحظ أداء حديثة على كلا البيانات.
Most recent studies for relation extraction (RE) leverage the dependency tree of the input sentence to incorporate syntax-driven contextual information to improve model performance, with little attention paid to the limitation where high-quality dependency parsers in most cases unavailable, especially for in-domain scenarios. To address this limitation, in this paper, we propose attentive graph convolutional networks (A-GCN) to improve neural RE methods with an unsupervised manner to build the context graph, without relying on the existence of a dependency parser. Specifically, we construct the graph from n-grams extracted from a lexicon built from pointwise mutual information (PMI) and apply attention over the graph. Therefore, different word pairs from the contexts within and across n-grams are weighted in the model and facilitate RE accordingly. Experimental results with further analyses on two English benchmark datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.
المراجع المستخدمة
https://aclanthology.org/
نقترح أن نقترح تصميم الرسوم البيانية التي تم تفكيكها عن الكلمات الفائقة من الفئة الدلالية الفائقة بين استخدامات الكلمات مع صياغة Bayesian لنموذج Black Block المرجح، وهو نموذج عام لرسوم بيانية عشوائية شعبية في علم الأحياء والفيزياء والعلوم الاجتماعية.
أصبح نص قصير في الوقت الحاضر أشكالا أكثر عصرية من البيانات النصية، على سبيل المثال، منشورات Twitter، عناوين الأخبار ومراجعات المنتجات. يلعب استخراج الموضوعات الدلالية من النصوص القصيرة دورا مهما في مجموعة واسعة من تطبيقات NLP، ومصمم الموضوع العصبي ال
يتم إجراء جيل نصي من الرسوم البيانية الدلالية تقليديا مع الطرق الحتمية، والتي تولد وصفا فريدا نظرا رسم بياني للإدخال.ومع ذلك، تعترف مشكلة الجيل مجموعة من النواتج النصية المقبولة، وعرض الاختلاف المعجمي والمنظمات والدلية.لمعالجة هذا الفصل، نقدم مساهمتي
الفهم القراءة الآلة التفاعلية (IMRC) هو مهام فهم الجهاز حيث تكون مصادر المعرفة يمكن ملاحظتها جزئيا.يجب أن يتفاعل الوكيل مع بيئة بالتتابع لجمع المعرفة اللازمة من أجل الإجابة على سؤال.نحن نفترض أن تمثيلات الرسم البياني هي تحيزات حثي جيدة، والتي يمكن أن
أصبحت الرسوم البيانية المعرفة (KGS) شعبية بشكل متزايد في السنوات الأخيرة. ومع ذلك، نظرا لأن المعرفة تنمو باستمرار وتغييرات، فمن المحتم أن تمتد KGS الموجودة مع الكيانات التي ظهرت أو أنها ذات صلة بنطاق كجم بعد إنشائها. تعتمد البحث في تحديث KGS عادة على