ترغب بنشر مسار تعليمي؟ اضغط هنا

طرق debiasing في فهم اللغة الطبيعية تجعل التحيز أكثر قابلية للوصول

Debiasing Methods in Natural Language Understanding Make Bias More Accessible

571   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما يتم تحديد موكب النموذج إلى التحيز من خلال التعميم على مجموعات البيانات الخارجية المصممة بعناية.أساليب الدخل الحديثة في فهم اللغة الطبيعية (NLU) تحسين الأداء على مجموعات البيانات هذه عن طريق الضغط على النماذج في تحقيق تنبؤات غير متحيزة.الافتراض الأساسي وراء هذه الأساليب هو أن هذا يؤدي أيضا إلى اكتشاف ميزات أكثر قوة في التمثيلات الداخلية للنموذج.نقترح إطارا عاما يستند إلى التحقيق العامة يسمح بتفسير ما بعد الهوك للتحيزات في طرازات اللغة، واستخدام نهج نظرية معلومات لقياس قابلية استخراج بعض التحيزات من تمثيلات النموذج.نقوم بتجربة العديد من مجموعات بيانات NLU والتحيزات المعروفة، وتظهر ذلك، مضادا بشكل حدسي، كلما دفع نموذج لغة أكثر نحو نظام ديبي، فإن التحيز الأكثر ترميزا بالفعل في تمثيلاته الداخلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب ينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.
في هذه الورقة، نقترح تعريف وتعريفي من أنواع مختلفة من المحتوى النصي غير القياسي - يشار إليها عموما باسم الضوضاء "- في معالجة اللغة الطبيعية (NLP). في حين أن معالجة البيانات المسبقة هي بلا شك مهم بلا شك في NLP، خاصة عند التعامل مع المحتوى الذي تم إنشا ؤه من قبل المستخدم، فإن فهم أوسع لمصادر الضوضاء المختلفة وكيفية التعامل معها هو جانب تم إهماله إلى حد كبير. نحن نقدم قائمة شاملة للمصادر المحتملة للضوضاء، وتصنيفها ووصفها، وتظهر تأثير مجموعة فرعية من استراتيجيات المعالجة القياسية المعدلة على مهام مختلفة. هدفنا الرئيسي هو زيادة الوعي بالمحتوى غير المعتاد - والذي لا ينبغي اعتباره دائما ضوضاء "- والحاجة إلى المعالجة المسبقة التي تعتمد على المهام. هذا بديل إلى بطانية، مثل الحلول الشاملة التي تطبقها الباحثون بشكل عام من خلال "خطوط أنابيب معالجة مسبقا مسبقا". النية هي لهذا التصنيف بمثابة نقطة مرجعية لدعم الباحثين NLP في وضع الاستراتيجيات لتنظيف أو تطبيع أو احتضان المحتوى غير المعتاد.
التقييم للعديد من مهام فهم اللغة الطبيعية (NLU) مكسورة: النتيجة أنظمة غير موثوقة ومنحمة للغاية على المعايير القياسية التي توجد مساحة صغيرة للباحثين الذين يقومون بتطوير أنظمة أفضل لإظهار التحسينات الخاصة بهم.إن الاتجاه الأخير للتخلي عن معايير IID لصال ح مجموعات الاختبارات التي تم إنشاؤها المشدة، خارج التوزيع تضمن أن النماذج الحالية ستؤدي بشكل سيء، ولكن في نهاية المطاف تحجب القدرات التي نريد قياس معاييرنا.في ورقة الموقف هذه، نضع أربعة معايير نجد أن معايير NLU يجب أن تلبي.نجرب أن معظم المعايير الحالية تفشل في هذه المعايير، وأن جمع البيانات العديفية لا يعالج سلبيا أسباب هذه الإخفاقات.بدلا من ذلك، سيتطلب استعادة النظام الإيكولوجي للتقييم الصحي تقدما ملحوظا في تصميم مجموعات البيانات القياسية، والموثوقية التي يتم عرضها معها، وحجمها، والطرق التي تتعاملون مع التحيز الاجتماعي.
تقدم هذه الورقة خط أنابيب التعلم شبه الإشرافه (SSL) على أساس إطار المعلم الطالب، الذي يزداد ملايين الأمثلة غير المستمرة لتحسين مهام فهم اللغة الطبيعية (NLU). نحن نبحث في سؤالين يتعلق باستخدام البيانات غير المسبقة في سياق الإنتاج SSL: 1) كيفية تحديد ع ينات من تجمع بيانات ضخمة غير مسفوقة مفيدة لتدريب SSL، و 2) كيف تؤثر البيانات المحددة على أداء حالة مختلفة من بين تقنيات SSL-Art. نقارن أربعة تقنيات SSL المستخدمة على نطاق واسع، والتسمية الزائفة (PL)، وقطاع المعرفة (KD)، والتدريب الخصم الافتراضي (VAT) والتدريب عبر الرؤية (CVT) جنبا إلى جنب مع طريقتين اختيار البيانات بما في ذلك الاختيار القائم على اللجنة وتحسين الأسفل اختيار مقرها. نحن ندرس مزيدا من فوائد وعيوب هذه التقنيات عند تطبيقها على تصنيف تكاليف النية (IC) ومهام التعرف على الكيان المسماة (NER)، وتوفير المبادئ التوجيهية التي تحدد عندما تكون كل من هذه الطرق مفيدة لتحسين أنظمة NLU كبيرة الحجم.
نقدم خوارزمية تدريبية مستهدفة بسيطة ولكنها فعالة (TAT) لتحسين التدريب الخصم لفهم اللغة الطبيعية.الفكرة الرئيسية هي أن تخطئ الأخطاء الحالية وتحديد أولويات التدريب على الخطوات إلى حيث يخطئ النموذج أكثر.تظهر التجارب أن TAT يمكن أن تحسن بشكل كبير الدقة ع لى التدريب الخصم القياسي على الغراء وتحقيق نتائج جديدة من أحدث النتائج في XNLI.سيتم إصدار شفرة لدينا عند قبول الورقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا