ترغب بنشر مسار تعليمي؟ اضغط هنا

استكشاف دور تمثيلات Bert Token لشرح نتائج تحقيق الجملة

Exploring the Role of BERT Token Representations to Explain Sentence Probing Results

301   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم تنفيذ العديد من الدراسات على الكشف عن الميزات اللغوية التي أسرتها بيرت. يتم تحقيق ذلك عادة من خلال تدريب مصنف تشخيصي على تمثيلات تم الحصول عليها من طبقات مختلفة من بيرت. ثم يتم تفسير دقة التصنيف اللاحقة على أنها قدرة النموذج في ترميز الممتلكات اللغوية المقابلة. على الرغم من تقديم رؤى، فقد تركت هذه الدراسات الدور المحتمل لتمثيلات الرمز المميز. في هذه الورقة، نقدم تحليلا أكثر متعمقا حول مساحة تمثيل بيرت بحثا عن مساحات فرعية متميزة وذات مغزى يمكن أن تفسر الأسباب الكامنة وراء هذه النتائج التحقيق. بناء على مجموعة من المهام التحقيق ومع مساعدة أساليب الإسناد، نوضح أن بيرت يميل إلى تشفير المعرفة الهادفة في تمثيلات رمزية محددة (والتي غالبا ما يتم تجاهلها في إعدادات التصنيف القياسية)، مما يسمح للنموذج بالكشف عن تشوهات النحوية والدلالية، ولل منفصلة بشكل مميز رقم النحوي والضواس الفرعية المتوترة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

استخراج الأحداث على مستوى المستند أمر بالغ الأهمية لمختلف مهام معالجة اللغة الطبيعية لتوفير معلومات منظمة.النهج الحالية عن طريق النمذجة المتسلسلة إهمال الهياكل المنطقية المعقدة للنصوص الطويلة.في هذه الورقة، نستفيد بين تفاعلات الكيان وتفاعلات الجملة خ لال المستندات الطويلة وتحويل كل وثيقة إلى رسم بياني غير مرمى غير مسبهب من خلال استغلال العلاقة بين الجمل.نقدم مجتمع الجملة لتمثيل كل حدث كشركة فرعية.علاوة على ذلك.توضح التجارب أن إطارنا يحقق نتائج تنافسية على الأساليب الحديثة على مجموعة بيانات استخراج الأحداث على مستوى الوثيقة على نطاق واسع.
تركز معظم مهام الإجابة على معظم الأسئلة على التنبؤ بإجابات ملموسة، مثل الكيانات المسماة.يمكن تحقيق هذه المهام عادة عن طريق فهم السياقات دون وجود معلومات إضافية مطلوبة.في قراءة الفهم من المهمة المعنى التجريدي (إعادة التقييم)، يتم تقديم الإجابات المجرد ة.لفهم معاني مجردة في السياق، المعرفة الإضافية ضرورية.في هذه الورقة، نقترح نهج يهدف إلى أن يشرف رصيد بيرت المدرب مسبقا كموارد معرفة مسبقة.وفقا للنتائج، فإن نهجنا باستخدام بيرت المدربة مسبقا تفوقت على الأساس.إنه يدل على أنه يمكن استخدام Abeddings Token Bertken المدربة مسبقا كمعرفة إضافية لفهم المعاني المجردة في الإجابة على الأسئلة.
في هذه الورقة، نقترحنا بمحاذاة تمثيلات الجملة من لغات مختلفة إلى مساحة تضمين موحدة، حيث يمكن حساب أوجه التشابه الدلالي (كل من الصليب اللغوي والأونولينغ) بمنتج نقطة بسيطة.نماذج اللغة المدربة مسبقا صقلها بشكل جيد مع مهمة تصنيف الترجمة.يستخدم العمل الحا لي (فنغ وآخرون.، 2020) جمل داخل الدفعة مثل السلبيات، والتي يمكن أن تعاني من مسألة السلبيات السهلة.نحن نتكيف مع MOCO (هو et al.، 2020) لمزيد من تحسين جودة المحاذاة.نظرا لأن النتائج التجريبية تظهر، فإن تمثيلات الجملة التي تنتجها نموذجنا لتحقيق أحدث الولاية الجديدة في العديد من المهام، بما في ذلك البحث عن التشابه التشابه TATOEBA EN-ZH (Artetxe Andschwenk، 2019b)، Bucc En-Zh BiteXTالتشابه النصي في 7 مجموعات البيانات.
غالبا ما تكون نماذج اللغة المدربة مسبقا مسبقا (PLMS) باهظة الثمن بشكل أساسي في الاستدلال، مما يجعلها غير عملية في مختلف تطبيقات العالم الحقيقي المحدودة. لمعالجة هذه المشكلة، نقترح مقاربة تخفيض رمزية ديناميكية لتسريع استنتاج PLMS، والتي تسمى Tr-Bert، والتي يمكن أن تتكيف مرونة عدد الطبقة من كل رمزي في الاستدلال لتجنب الحساب الزائد. خصيصا، تقوم Tr-Bert بتصوير عملية تخفيض الرمز المميز كأداة اختيار رمز تخطيط متعدد الخطوات وتعلم تلقائيا استراتيجية الاختيار عبر التعلم التعزيز. تظهر النتائج التجريبية على العديد من مهام NLP المصب أن Tr-Bert قادرة على تسريع بيرتف بمقدار 2-5 مرات لإرضاء متطلبات الأداء المختلفة. علاوة على ذلك، يمكن ل TR-Bert تحقيق أداء أفضل مع حساب أقل في مجموعة من المهام النصية الطويلة لأن تكييف رقم الطبقة على مستوى الرمز المميز يسرع بشكل كبير عملية انتباه الذات في plms. يمكن الحصول على شفرة المصدر وتفاصيل التجربة لهذه الورقة من https://github.com/thunlp/tr-bert.
تتميز هذه المراجعات الورقية بهذه الأساليب الهندسية للتنبؤ بمستوى تعقيد الكلمات الإنجليزية في سياق معين باستخدام تقنيات الانحدار.احتلت أفضل طلب لدينا في مهمة التعقيد المعجمية (LCP) المرتبة الثالثة من 48 شركة للمهمة الفرعية 1 وحققت معاملات ارتباط بيرسو ن من 0.779 و 0.809 لكلمات واحدة وتعبيرات متعددة الكلمات على التوالي.الاستنتاج هو أن مزيج من الميزات المعجمية والسياقية والدلية لا يزال بإمكانه إنتاج خطوط خطوط خطوط خطوط قوية عند مقارنتها ضد الحكم الإنساني.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا