ترغب بنشر مسار تعليمي؟ اضغط هنا

Tebner: التعرف على الكيان المحدد للمجال مع شبكة توسيع نطاق الشبكة

TEBNER: Domain Specific Named Entity Recognition with Type Expanded Boundary-aware Network

203   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

للتخفيف من ندرة التسمية في مهمة التعرف على الكيان المسمى (NER)، يتم تطبيق أساليب NER التي أشرف بشكل كبير على نطاق واسع على البيانات التسمية تلقائيا وتحديد الكيانات.على الرغم من انخفاض الجهود البشرية، فإن التعليقات التوضيحية غير المكتملة والصعار الناتجة تشكل تحديات جديدة لتعلم النماذج العصبية الفعالة.في هذه الورقة، نقترح طريقة تمديد القاموس الرواية التي تستخرج كيانات جديدة من خلال النموذج الموسع من النوع.علاوة على ذلك، نقوم بتصميم شبكة تدرك حدود متعددة التحبيب التي تكتشف حدود الكيان من وجهات النظر المحلية والعالمية.نقوم بإجراء تجارب على أنواع مختلفة من مجموعات البيانات، تظهر النتائج أن طرازنا تتفوق على الأنظمة السابقة للإشراف المستمرة، وحتى تجاوز النماذج الخاضعة للإشراف.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يدل العمل الحالي في التعرف على الكيان المسمى (NER) أن تقنيات تكبير البيانات يمكن أن تنتج نماذج أكثر قوة.ومع ذلك، تركز معظم التقنيات الموجودة على زيادة البيانات داخل المجال في سيناريوهات الموارد المنخفضة حيث تكون البيانات المشروحة محدودة للغاية.في هذا العمل، نأخذ هذا الاتجاه البحثي إلى المعاكس ودراسة تكبير بيانات المجال عبر المجال لمهمة NER.نحن نبحث في إمكانية الاستفادة من البيانات من مجالات الموارد العالية من خلال إسقاطها في مجالات الموارد المنخفضة.على وجه التحديد، نقترح بنية عصبية رواية لتحويل تمثيل البيانات من الموارد العالية إلى مجال موارد منخفضة من خلال تعلم الأنماط (مثل الأناقة والضوضاء والاختصارات، وما إلى ذلك) في النص الذي يميزها ومساحة ميزة مشتركةحيث يتماشى كلا المجالين.نقوم بتجربة مجموعات بيانات متنوعة وإظهار أن تحويل البيانات إلى تمثيل مجال الموارد المنخفض يحقق تحسينات كبيرة على استخدام البيانات فقط من مجالات الموارد العالية.
تم دراسة التعرف على الكيان المسمى Nestate (NNER) على نطاق واسع، تهدف إلى تحديد جميع الكيانات المتداخلة من تمديدات محتملة (I.E.، واحد أو أكثر من الرموز المستمرة). ومع ذلك، فإن الدراسات الحديثة لأي نانر إما التركيز على مخططات العلامات الشاقة أو الاستفا دة من الهياكل المعقدة، والتي تفشل في تعلم تمثيلات فعالة من جملة المدخلات مع كيانات متداخلة للغاية. بمعنى حدسي، ستساهم تمثيلات صريحة في نانر بسبب معلومات السياق الغنية التي تحتوي عليها. في هذه الدراسة، نقترح شبكة محول هرمية (HITRANS) للمهمة NNER، والتي تتحلل جملة الإدخال إلى تمثال متعدد الحبوب وتعزز التعلم التمثيل بطريقة هرمية. على وجه التحديد، نستخدم أول وحدة من المرحلة الأولى لتوليد تمثيلات تمتد عن طريق معلومات السياق التجميعية بناء على شبكة محول من أسفل إلى أعلى وهبوطا. ثم تم تصميم طبقة التنبؤ الملصق للتعرف على الكيانات المتداخلة هرمية، والتي تستكشف بشكل طبيعي التبعيات الدلالية بين تمديد مختلفة. تثبت تجارب مجموعات بيانات Genia و ACE-2004 و ACE-2005 و NNE أن طريقةنا المقترحة تحقق أداء أفضل بكثير من النهج التي من بين الفني.
الملخص نتخذ خطوة نحو معالجة تمثيل القارة الأفريقية في أبحاث NLP من خلال جلب مختلف أصحاب المصلحة من أصحاب المصلحة في إنشاء بيانات كبيرة متاحة للجمهور وعالية الجودة للتعرف على الكيان المسمى (NER) في عشرة لغات أفريقية.إننا نقوم بالتفصيل خصائص هذه اللغات لمساعدة الباحثين والممارسين على فهم التحديات التي يفرضونها على مهام NER.نقوم بتحليل مجموعات البيانات لدينا وإجراء تقييم تجريبي واسع النطاق للطرق الحكومية في جميع إعدادات التعلم الإشراف والنقل.أخيرا، نطلق سراح البيانات والرمز والنماذج لإلهام البحوث المستقبلية على الأفريقية NLP.1
الملخص في هذا العمل، ندرس قدرة نماذج NER لاستخدام المعلومات السياقية عند التنبؤ بنوع كيان غامض.نقدم NRB، اختبار جديد مصمم بعناية لتشخيص تحيز الانتظام من النماذج NER.تشير نتائجنا إلى أن جميع النماذج الحديثة التي اختبرناها إظهار مثل هذا التحيز؛نماذج Be rt Tuned Tunded بشكل كبير تفوقها بشكل كبير (LSTM-CRF) على NRB، على الرغم من وجود أداء قابلة للمقارنة (أحيانا أقل) على المعايير القياسية.لتخفيف هذا التحيز، نقترح طريقة تدريب نموذجية نماذج جديدة تضيف الضوضاء المخدرة القابلة للتعلم إلى بعض الكيانات، وبالتالي فرض النماذج للتركيز بقوة أكبر على الإشارة السياقية، مما يؤدي إلى مكاسب كبيرة على NRB.الجمع بينه مع استراتيجيات تدريبية أخرى، وتعزيز البيانات وتجميد المعلمة، يؤدي إلى مزيد من المكاسب.
الملخص ندرس التعلم التعرف على الكيان المسمى في وجود التعليقات التوضيحية في الكيان المفقود.نحن نقترب من هذا الإعداد باسم وضع علامات مع المتغيرات الكامنة واقتراح خسارة جديدة، ونسبة الكيان المتوقعة، لتعلم النماذج بحضور العلامات المفقودة بشكل منهجي.نظرا لأن نهجنا صوتي من الناحية النظرية ومفيدة تجريبيا.تجريفيا، نجد أنه يجتمع أو يتجاوز أداء خطوط أساس قوية وحديثة من بين الفنون عبر مجموعة متنوعة من اللغات والسيناريوهات التوضيحية ومبالغ البيانات المسمى.على وجه الخصوص، نجد أنه يتفوق بشكل كبير على الطرق السابقة من الأساليب السابقة من Mayhew et al.(2019) ولي وآخرون.(2021) بواسطة +12.7 و +2.3 F1 النتيجة في بيئة صعبة مع فقط 1000 عرض توضيحية متحيزة، بلغ متوسطها عبر 7 مجموعات من مجموعات البيانات.نظهر أيضا أنه عندما يقترن نهجنا، فإن مخطط التعليق التوضيحي رواية متفوقة تفوق التعليق التوضيحي الشامل لميزانيات التوضيحية المتواضعة

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا