ترغب بنشر مسار تعليمي؟ اضغط هنا

AMR مكدسة تحليل مع البيانات الفضية

Stacked AMR Parsing with Silver Data

240   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تفتقر إلى البيانات المشروحة غير المشروح بين الإنسان هي تحدي رئيسي واحد لتحليل تمثيل المعنى التجريدي (AMR). لتخفيف هذه المشكلة، عادة ما تستخدم الأعمال السابقة البيانات الفضية أو نماذج اللغة المدربة مسبقا. على وجه الخصوص. ومع ذلك، فإنه يجعل فك تشفير أبطأ نسبيا. في هذا العمل، نحقق مناهج بديلة لتحقيق أداء تنافسي بسرعات أسرع. نقترح محلل عمرو المبسط وتقنية تدريب مسبقة الاستخدام للاستخدام الفعال للبيانات الفضية. نقوم بإجراء تجارب مكثفة على مجموعة بيانات AMR2.0 المستخدمة على نطاق واسع وتظهرت النتائج أن محلل عمرو المحولات لدينا يحقق أفضل أداء بين النماذج المستندة إلى SEQ2Graph. علاوة على ذلك، مع البيانات الفضية، يحقق نموذجنا نتائج تنافسية مع نموذج SOTA، والسرعة هي أمر ذو حجم أسرع. تتم التحليلات التفصيلية للحصول على المزيد من الأفكار في نموذجنا المقترح وفعالية تقنية التدريب المسبق.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعد تحليل التمثيل المعنى التجريدي مهمة التنبؤ بالسجن إلى الرسم حيث لا تتماشى العقد المستهدفة بشكل صريح إلى رموز الجملة. ومع ذلك، نظرا لأن عقد الرسوم البيانية تستند بشكل دلون على أساس واحد أو أكثر من رموز الجملة، يمكن استخلاص المحاذاة الضمنية. تعمل ال محللون المستقلون على الانتقال عبر الجملة من اليسار إلى اليمين، والتقاط هذا التحيز الاستقرائي عبر المحاذاة بتكلفة التعبير المحدود. في هذا العمل، نقترح نظام يستند إلى الانتقال الذي يجمع بين الصعب على الجمل مع آلية مؤشر الإجراءات ذات الجانب المستهدف لتحديد الرموز المصدر من تمثيلات العقدة ومحاذاة العناوين. نقوم بالنماذج التحولات وكذلك آلية المؤشر من خلال تعديلات واضحة داخل بنية محول واحدة. يتم تشفير معلومات هيكل الدولة ومحلل الرسم البياني بكفاءة باستخدام رؤوس الانتباه. نظظ أن نهج مؤشر العمل لدينا يؤدي إلى زيادة التعبير عن التعبير والكتابة مكاسب كبيرة (+1.6 نقطة) مقابل أفضل محلل عمرو على الانتقال في ظروف مماثلة للغاية. أثناء استخدام أي رسوم إعادة التصنيف الرسم البياني، فإن طرازنا الفردي ينتج عنه ثاني أفضل نقاط Smatch في AMR 2.0 (81.8)، والذي تم تحسينه إلى 83.4 مع بيانات الفضة والكشف عن الفرم.
مقاييس التقييم التلقائية المستندة إلى المرجعية محدودة بشكل ملحوظ ل NLG بسبب عدم قدرتها على التقاط مجموعة كاملة من النواتج المحتملة.نحن ندرس بديلا للإشارة: تقييم كفاية الرسوم البيانية من جمل اللغة الإنجليزية التي تم إنشاؤها من الرسوم البيانية التمثيل المعنى التجريدي (AMR) عن طريق التحليل في عمرو ومقارنة التحليل مباشرة إلى المدخلات.نجد أن الأخطاء التي أدخلتها تحليل عمرو التلقائي تقيص بشكل كبير من فعالية هذا النهج، ولكن دراسة تحرير يدوية تشير إلى أنه نظرا لأن التحليل يحسن، فإن التقييم القائم على التحلل يحتوي على إمكانية تفوق معظم المقاييس المرجعية.
نحن ندرس تحليل عمرو متعدد اللغات من منظور تقطير المعرفة، حيث يكون الهدف هو تعلم وتحسين محلل عمرو متعدد اللغات باستخدام محلل إنجليزي موجود كمعلم لها.نحن تقيد استكشافنا في إعداد صارم متعدد اللغات: هناك نموذج واحد لتحليل جميع اللغات المختلفة بما في ذلك اللغة الإنجليزية.نحدد أن المدخلات الصاخبة والإخراج الدقيق هي مفتاح التقطير الناجح.جنبا إلى جنب مع التدريب المسبق الواسع، نحصل على محلل عمري الذي يتجنب عروضه جميع النتائج التي تم نشرها مسبقا على أربعة لغات أجنبية مختلفة، بما في ذلك الهوامش الألمانية والإسبانية والإيطالية والصينية، بواسطة هوامش كبيرة (تصل إلى 18.8 نقطة برائحة على الصينية وفي المتوسط 11.3نقاط smatch).يحقق محللنا أيضا أداء قابلا للمقارنة على اللغة الإنجليزية إلى أحدث المحللين باللغة الإنجليزية فقط.
في تحليل التمثيل المعني المتبادل التجريدي (AMR)، يقوم الباحثون بتطوير النماذج التي تمارس طرزها من لغات مختلفة على الأمراض الأمريكية لالتقاط هياكلها الدلالية الأساسية: بالنظر إلى عقوبة بأي لغة، نهدف إلى التقاط المحتوى الدلالي الأساسي من خلال المفاهيم المتصلةأنواع متعددة من العلاقات الدلالية.الأساليب عادة ما تصل إلى بيانات التدريب الفضي الكبيرة لتعلم نموذج واحد قادر على مشروع الجمل غير الإنجليزية إلى AMRS.ومع ذلك، نجد أن خط الأساس البسيط يميل إلى التغاضي عنه: ترجمة الجمل إلى الإنجليزية وتستعرض AMR الخاص بهم مع محلل عمرو أحادي (ترجمة + تحليل، T + P).في هذه الورقة، نؤيد هذا الخط الأساسي البسيط من خطوتين، وتعزيزه بنظام NMT قوي ومحلل عمرو قوي.تظهر تجاربنا أن T + P يتفوق على نظام أحدث حديثة في جميع اللغات التي تم اختبارها: الألمانية والإيطالية والإسبانية وماندرين مع +14.6 و +12.6 و +14.3 ونقاط Smatch
AMR (تمثيل المعنى التجريدي) و EDS (هياكل التبعية الابتدائية) هي تمثيلين لمعنى شعبيتين في NLP / NLU.AMR أكثر مجردة ومفاهيمية، في حين أن EDS هو أعلى مستوى منخفض، أقرب إلى الهياكل المعجمية للجمل المحددة.وبالتالي ليس من المستغرب أن تحليل EDS أسهل من تحلي ل عمرو.في هذا العمل، نفكر في استخدام معلومات من تحليل EDS للمساعدة في تحسين أداء تحليل عمرو.نعتمد محلل محلل ومقره انتقالي ويقترح بإضافة الرسوم البيانية EDS كيزات دلالة إضافية باستخدام تشفير رسم بياني يتكون من LSTM LETER وطبقة GCN.تبين نتائجنا التجريبية أن المعلومات الإضافية من تحليل EDS يعطي بالفعل دفعة إلى أداء محلل عمرو الأساسي المستخدمة في تجاربنا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا