ترغب بنشر مسار تعليمي؟ اضغط هنا

المنافسة النمطية المستقلة لإدماج المعرفة والتحسين

Competing Independent Modules for Knowledge Integration and Optimization

267   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعرض هذه الورقة إطارا عصبي للوحدات المستقلة غير المستقلة، المستخدمة هنا لإدماج مصادر معرفة الرف مثل نماذج اللغة، ويكيوميكا، ومعلومات نقاط البيع، وعلاقات التبعية.يتم تطبيق كل مصدر معرف ككون مستقل يمكنه التفاعل وتبادل المعلومات مع مصادر المعرفة الأخرى.نبلغ عن إثبات تجارب مفهوم للعديد من مهام تحليل المعنويات القياسية وإظهار أن مصادر المعرفة تتجاوز بفعالية دون تدخل.كحالة للاستخدام الثاني، نوضح أن الإطار المقترح مناسب لتحسين نماذج اللغة التي تشبهها بيرت حتى دون مساعدة مصادر المعرفة الخارجية.نقدم كل طبقة محول كوحدة منفصلة وإظهار تحسينات الأداء من هذا التكامل الصريح للمعلومات المختلفة المشفرة في طبقات المحولات المختلفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

UDIFY هو محلل التبعية اللاإرائي لغرفة التبعية اللغوية التي يتم تدريبها على كوربوس متعدد الألوان من 75 لغة.يتيح هذا النمذجة متعددة اللغات النموذج من التعميم على اللغات غير المعروفة / الأقل شهرة، مما يؤدي إلى تحسين الأداء على لغات الموارد المنخفضة.في ه ذا العمل، استخدمنا المعرفة النموذجية اللغوية المتاحة في قاعدة بيانات أوريل، لتحسين قدرة النقل المتبقية من udify أكثر من ذلك.
يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. ف ي حين أن محاكاة المستخدمين المشفرة باليد، فقد ثبت أن محاكاة المستخدمين الذين يعتمدون على القواعد كافية في المجالات الصغيرة والبسيطة، لأن عدد القواعد المعقدة بسرعة أصلي. لا تزال محاكاة المستخدم التي يحركها بيانات البيانات، من ناحية أخرى، تعتمد على المجال. هذا يعني أن التكيف مع كل مجال جديد يتطلب إعادة تصميم وإعادة التدريب. في هذا العمل، نقترح محاكاة للمستخدم المستقل المستقل للمجال (TUS). لا يتم ربط هيكل TUS مجال معين، وتمكين تعميم المجال وتعلم سلوك المستخدم عبر المجال من البيانات. نحن نقارن TUS مع أحدث التقيمات التلقائية وكذلك الإنسان. يمكن أن يتنافس TUS مع محاكاة المستخدمين المستند إلى القواعد على المجالات المحددة مسبقا ويمكن أن يعممون إلى المجالات غير المرئية في أزياء صفرية.
تصميم التمثيلات التعبيرية للكيانات والعلاقات في الرسم البياني المعرفي هو مسعى مهم. في حين أن العديد من الأساليب الحالية تركز بشكل أساسي على التعلم من الأنماط العلائقية والمعلومات الهيكلية، فقد تم تجاهل التعقيد الجوهري لكي كيانات KG أكثر أو أقل. بشكل أكثر ملاءمة، نفترض كيانات KG قد تكون أكثر تعقيدا مما نعتقد، أي، قد يرتدي الكيان العديد من القبعات والأحدث العلائقية قد تشكل بسبب أكثر من سبب واحد. تحقيقا لهذه الغاية، تقترح هذه الورقة التعلم من تمثيلات DESENTANGLED من كيانات كيغ كيغ - وهي طريقة جديدة تقوم بتخفيف الخصائص الكامنة الداخلية لكي كيانات كيغ كيانات. تعمل عملية DESTANGLED الخاصة بنا على مستوى الرسم البياني ويتم الاستفادة من آلية الحي لزيادة الخصائص المخفية لكل كيان. هذا النهج التعلم في التمثيل هذا هو نموذج غير مرجح ومتوافق مع نهج Enonical KG Adgedding. نقوم بإجراء تجارب مكثفة على العديد من مجموعات البيانات القياسية، تجهيز مجموعة متنوعة من النماذج (الإقصاء، بسيطة، والقلق) مع آلية DESTANGLING المقترحة. توضح النتائج التجريبية أن نهجنا المقترح يحسن الأداء بشكل كبير على المقاييس الرئيسية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا