ترغب بنشر مسار تعليمي؟ اضغط هنا

نموذج متحلل عميق ل Secornangling بناء الجملة والدلالات في تمثيل الجملة

A Deep Decomposable Model for Disentangling Syntax and Semantics in Sentence Representation

367   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في الآونة الأخيرة، تقدم DEVENTANGLEMEMEMENEM بناء على شبكة خدرية توليدية أو AutoNCoder التباين بشكل كبير أداء التطبيقات المتنوعة في مجالات السيرة الذاتية و NLP.ومع ذلك، لا تزال هذه النماذج تعمل على مستويات خشنة في تحسين الخصائص ذات الصلة ارتباطا وثيقا، مثل بناء الجملة والدلالات باللغات البشرية.تقدم هذه الورقة نموذجا متحللا عميقا يستند إلى بناء جملة VAE ل DisentAnge و DeMantics باستخدام عقوبات الارتباط الكلية على اختلافات KL.والجدير بالذكر أننا نتحلل مدة الاختلاف KL من VAE الأصلي بحيث يمكن فصل المتغيرات الكامنة التي تم إنشاؤها بطريقة أكثر وضوحا وتفسيرا.تبين التجارب على مجموعات البيانات القياسية أن نموذجنا المقترح يمكن أن يحسن بشكل كبير من جودة الإعانات بين التمثيلات النحوية والدلية لمهام التشابه الدلالي ومهام التشابه النحوية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت نماذج اللغة المدربة مسبقا نجاحا كبيرا على مجموعة واسعة من مهام NLP. ومع ذلك، فإن التمثيلات السياقية من النماذج المدربة مسبقا تحتوي على معلومات دلالية ومتنامية متشابكة، وبالتالي لا يمكن استخدامها مباشرة لاستخلاص مدينات جملة دلالية مفيدة لبعض المه ام. تقدم أزواج إعادة صياغة طريقة فعالة لتعلم التمييز بين الدلالات وبناء الجملة، حيث أنهم يشاركون بشكل طبيعي دلالات وغالبا ما يختلف في بناء جملة. في هذا العمل، نقدم Parabart، وهي جملة دلالية تضمين نموذج يتعلم تكديح دلالات ودليل بناء الجملة في مذكرات الجملة التي تم الحصول عليها بواسطة نماذج اللغة المدربة مسبقا. يتم تدريب PARABART على إجراء إعادة صياغة موجهة إلى بناء الجملة، استنادا إلى جملة مصدر تشترك في الدلالات مع إعادة صياغة الهدف، وشجرة تحليل تحدد بناء الجملة المستهدف. وبهذه الطريقة، يتعلم بارابارت تعليم التمثيل الدلالي والمنظمات النحوية من مدخلاتها مع تشفير منفصلة. تبين التجارب باللغة الإنجليزية أن بارابارت تتفوق على الأحكام التي تضم نماذج تضمينها على مهام التشابه الدلالي غير المعدل. بالإضافة إلى ذلك، نظير على أن نهجنا يمكن أن يؤدي إلى إزالة المعلومات النحوية بشكل فعال من تضمين الجملة الدلالية، مما يؤدي إلى متانة أفضل ضد الاختلاف النحوي على المهام الدلالية المصب.
تم تجاهل المعلومات النحوية والدلية الخارجية إلى حد كبير من قبل نماذج حل النواة العصبية الحالية.في هذه الورقة، نقدم نموذجا مقرا له من الرسوم البيانية غير متجانسة لإدماج الهياكل النحوية والدلالية للجمل.يحتوي الرسم البياني المقترح على رسم بياني فرعي سنو ي حيث يتم توصيل الرموز الرائعة بناء على شجرة التبعية، ورسم إلكتروني فرعي دلالي يحتوي على حجج ويستند كمستلزمات دورا دالايا كحواف.من خلال تطبيق شبكة انتباه الرسوم البيانية، يمكننا الحصول على تمثيل كلمة معدنية من الناحية النحوية وغير المعزز، والتي يمكن دمجها باستخدام طبقة تكامل اليقظة وآلية Gating.تجارب في OnTonotes 5.0 معيار المعيار إظهار فعالية نموذجنا المقترح.
تعتمد أساليب نقل نمط النص الحالي (TST) على أسلوب الطبقات لتفكيك سمات محتوى النص والأناقة لنقل نمط النص. في حين أن المصنف الأسلوب يلعب دورا حاسما في طرق TST الحالية، لا يوجد تحقيق معروف على تأثيره على أساليب TST. في هذه الورقة، نقوم بإجراء دراسة تجريب ية عن قيود أقراص الطبقات المستخدمة في طرق TST الحالية. لقد أظهرنا أن مصنفات النمط الموجودة لا يمكنهم تعلم بناء جملة الجملة بشكل فعال وفي نهاية المطاف أداء نماذج TST الحالية. لمعالجة هذه المشكلة، نقترح نموذجا جديدا للجيل القابل للتحكم في بناء الجملة، والذي يتضمن مصنف بنمط بناء بناء الجملة يضمن التمثيلات الكامنة المستفادة التي تم التعهد بها بفعالية برياحة هيكل الجملة ل TST. من خلال تجارب واسعة على مهام نقل نمط نصية شعبية، نوضح أن طريقةنا المقترحة تتفوق بشكل كبير على اثني عشر طريقا حديثة. أظهرت دراسات الحالة لدينا أيضا قدرة SACG على توليد جمل ذات أسلوب يستهدف بطلاقة حافظت على المحتوى الأصلي.
تراجع الجملة هي تقنية تكييف مجال بسيطة وقوية.نقوم بإجراء تصنيف النطاق لحساب الحوسبة أوزان مع 1) نموذج اللغة Cross Entropy الفرق 2) شبكة عصبية تشفيرية 3) شبكة توتور العصبية العودية.قارنا هذه الأساليب فيما يتعلق بدقة تصنيف المجال ودراسة توزيع الاحتمالا ت الخلفية.ثم نقوم بتنفيذ تجارب NMT في السيناريو حيث ليس لدينا فورانيا متوازية في المجال وعلى الفورورا المحدودة في المجال.هنا ونحن نستخدم مصنف المجال للاعتقال جمل كوربوس التدريب خارج المجال.هذا يؤدي إلى تحسينات تصل إلى 2.1 بلو للترجمة الألمانية إلى الإنجليزية.
يُبيّن هذا البحث مفهوم نحو الجملة، و مفهوم نحو النص، و الفروق بينهما، و مجالات كلٍّ منهما، كما يحاول أن يُحدّد المعوّقات التي تمنع تقدّم هذا النوع من الدرس اللغوي في جامعاتنا العربية، ثم يتوقّف عند اتّجاهات الدراسات اللغويّة التي ظهر فيها هذا النو ع من الدرس اللغوي، كما يحاول رصد واقع هذا الدرس اللساني في الجامعات السورية، من خلال نموذج واحد، هو جامعة البعث، و يختم البحث بأهم النتائج و التوصيات التي يرى أنها يمكن أن تسهم بتطوير هذا النوع من الدرس اللساني.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا