تعد التصنيفات موارد قيمة للعديد من التطبيقات، ولكن التغطية المحدودة بسبب عملية العمالة اليدوية باهظة الثمن تعوق إمكانية تطبيقها العام. محاولة Works السابقة لتوسيع تصنيفات الأدتصات الموجودة تلقائيا لتحسين تغطيتها من خلال تضمين التعلم بمشاركة مفهوم في الفضاء الإقليدية، في حين أن التصنيفات، التسلسل الهرمي بطبيعتها، محاذاة بشكل طبيعي مع الخصائص الهندسية للفضاء القطعي. في هذه الورقة، نقدم HyperExpan، خوارزمية توسيع تصنيفية تسعى إلى الحفاظ على هيكل التصنيف في مساحة أكثر تعبيرا معبرة وتتعلم أن تمثل المفاهيم وعلاقاتها مع شبكة عصبية خاطئة (HGNN). على وجه التحديد، ترفع Hyperexpan تضمينات الموضع لاستغلال هيكل التصنيفات الموجودة، وتميز معلومات ملف تعريف المفهوم لدعم الاستدلال على مفاهيم جديدة غير مرئية أثناء التدريب. تشير التجارب إلى أن Hyperexpan المقترح تفوق النماذج الأساسية بنماذج أساسية مع التعلم التمثيلي في مساحة ميزة Euclidean وتحقق أداء حديثة على معايير التوسع التصنيفية.
Taxonomies are valuable resources for many applications, but the limited coverage due to the expensive manual curation process hinders their general applicability. Prior works attempt to automatically expand existing taxonomies to improve their coverage by learning concept embeddings in Euclidean space, while taxonomies, inherently hierarchical, more naturally align with the geometric properties of a hyperbolic space. In this paper, we present HyperExpan, a taxonomy expansion algorithm that seeks to preserve the structure of a taxonomy in a more expressive hyperbolic embedding space and learn to represent concepts and their relations with a Hyperbolic Graph Neural Network (HGNN). Specifically, HyperExpan leverages position embeddings to exploit the structure of the existing taxonomies, and characterizes the concept profile information to support the inference on new concepts that are unseen during training. Experiments show that our proposed HyperExpan outperforms baseline models with representation learning in a Euclidean feature space and achieves state-of-the-art performance on the taxonomy expansion benchmarks.
المراجع المستخدمة
https://aclanthology.org/
تظهر نماذج التعلم العميق تفضيلات للتركيب الإحصائي بشأن التفكير المنطقي.قد يتم حفظ الارتباطات الزائفة عند وجود تحيز إحصائي في بيانات التدريب، مما يحد بشدة من أداء النموذج بشكل خاص في سيناريوهات البيانات الصغيرة.في هذا العمل، نقدم إطار تدريب عدائي مضاد
توليد الاستجابات الإعلامية والمناسبة صعبة ولكنها مهمة لبناء أنظمة الحوار يشبه الإنسان. على الرغم من أن نماذج المحادثة المختلفة المعرفة قد اقترحت، إلا أن هذه النماذج لها قيود في الاستفادة من المعرفة التي تحدث بشكل غير منتظم في بيانات التدريب، ناهيك عن
تشير الدراسات النفسية الأخيرة إلى أن الأفراد الذين يعرضون التفكير الانتحاري يتحول بشكل متزايد إلى وسائل التواصل الاجتماعي بدلا من ممارسي الصحة العقلية.شخصيا سياقته في تراكم هذا الاضطراب أمر بالغ الأهمية لتحديد دقيق للمستخدمين المعرضين للخطر.في هذا ال
حققت النماذج التراجعية التلقائية واسعة النطاق نجاحا كبيرا في توليد استجابة الحوار، بمساعدة طبقات المحولات. ومع ذلك، فإن هذه النماذج لا تتعلم مساحة كامنة تمثيلية لتوزيع الجملة، مما يجعل من الصعب التحكم في الجيل. لقد حاولت الأعمال الحديثة على تعلم تمثي
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي