تشير الدراسات النفسية الأخيرة إلى أن الأفراد الذين يعرضون التفكير الانتحاري يتحول بشكل متزايد إلى وسائل التواصل الاجتماعي بدلا من ممارسي الصحة العقلية.شخصيا سياقته في تراكم هذا الاضطراب أمر بالغ الأهمية لتحديد دقيق للمستخدمين المعرضين للخطر.في هذا العمل، نقترح إطارا يشترك في الاستفادة من التاريخ العاطفي للمستخدم والمعلومات الاجتماعية من حي المستخدم في شبكة إلى السياق تفسير أحدث تغريد المستخدم على Twitter.تعكس الطبيعة الخالية من النطاق لعلاقات الشبكة الاجتماعية، نقترح استخدام شبكات استئصال الرسم البياني القطعي، والتركيبة مع عملية الصقور لتعلم الطيف العاطفي التاريخي للمستخدم بطريقة حساسة للوقت.يتفوق نظامنا بشكل كبير على الأساليب الحديثة في هذه المهمة، مما يظهر فوائد كل من تمثيلات السياق الاجتماعي والخاصة.
Recent psychological studies indicate that individuals exhibiting suicidal ideation increasingly turn to social media rather than mental health practitioners. Personally contextualizing the buildup of such ideation is critical for accurate identification of users at risk. In this work, we propose a framework jointly leveraging a user's emotional history and social information from a user's neighborhood in a network to contextualize the interpretation of the latest tweet of a user on Twitter. Reflecting upon the scale-free nature of social network relationships, we propose the use of Hyperbolic Graph Convolution Networks, in combination with the Hawkes process to learn the historical emotional spectrum of a user in a time-sensitive manner. Our system significantly outperforms state-of-the-art methods on this task, showing the benefits of both socially and personally contextualized representations.
المراجع المستخدمة
https://aclanthology.org/
الكشف عن الأحداث وتطورها عبر الزمن مهمة حاسمة في فهم اللغة الطبيعية. المناهج العصبية الأخيرة لحدث استخراج العلاقات الزمنية عادة الأحداث عادة إلى التشرد في مساحة Euclidean وتدريب مصنف للكشف عن العلاقات الزمنية بين أزواج الأحداث. ومع ذلك، لا يمكن للمشر
تعد التصنيفات موارد قيمة للعديد من التطبيقات، ولكن التغطية المحدودة بسبب عملية العمالة اليدوية باهظة الثمن تعوق إمكانية تطبيقها العام. محاولة Works السابقة لتوسيع تصنيفات الأدتصات الموجودة تلقائيا لتحسين تغطيتها من خلال تضمين التعلم بمشاركة مفهوم في
لا تدعم العديد من Chatbots الموجودة بشكل فعال المبادرة المختلطة، مما أجبر مستخدميهم على الاستجابة بشكل سلبي أو يؤدي باستمرار. نسعى لتحسين هذه التجربة من خلال تقديم آليات جديدة لتشجيع مبادرة المستخدم في محادثات Chatbot الاجتماعية. نظرا لأن مبادرة المس
هدف البحث: يهدف البحث إلى تحديد المجموعات الدوائية الأكثر استعمالا في محاولات الانتحار الدوائي و بالتالي تسهيل قدرة الطبيب الشرعي على الشك بالتسمم .
الطرائق: شملت دراستنا على 175 حالة محاولة انتحار دوائي ( 50 ذكر و 125 أنثى) وثقت في سجلات المركز الو
حققت النماذج التراجعية التلقائية واسعة النطاق نجاحا كبيرا في توليد استجابة الحوار، بمساعدة طبقات المحولات. ومع ذلك، فإن هذه النماذج لا تتعلم مساحة كامنة تمثيلية لتوزيع الجملة، مما يجعل من الصعب التحكم في الجيل. لقد حاولت الأعمال الحديثة على تعلم تمثي