ترغب بنشر مسار تعليمي؟ اضغط هنا

التحليل النحوي المستندة إلى Corpus من التنسيق على عكس المستهدفين

A Corpus-based Syntactic Analysis of Two-termed Unlike Coordination

311   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

التنسيق هو ظاهرة اللغة التي تصدر شرطين أو أكثر من العبارات أو العبارات باستخدام التنسيق. على الرغم من أن التنسيق قد تم استكشافه على نطاق واسع في أدب اللغويات، فإن القواعد والقيود التي تحكم هيكلها لا تزال بعيد المنال إلى حد كبير وناقشت على نطاق واسع بين اللغويين. تقدم هذه الورقة دراسة لوجود تنسيقات على عكس المدىين على وجه الخصوص، حيث يشكل الزوجان من عبارة التنسيق مكونا صالحين ولكن لديهم فئات مميزة. أجرينا تحليلا نصنيا لفئات الجمل الفعلية التي يمكن ارتباطها في مثل هذه التنسيقات على عكس ذلك من خلال نهج محاسبي قائم على الكائنات الحاسوبية، باستخدام كوربوس اللغة الإنجليزية الأمريكية المعاصرة (COCA) كمصدر بيانات رئيسي، بالإضافة إلى بنك بنسار (PTB) وبعد تظهر النتائج أن اثنين من الالتحاق داخل التنسيقات على عكس عرض خصائص مختلفة بناء على موقفها، ودعم عرض مضاد للتنسيق لهيكل التنسيق. يوفر هذا البحث بيانات ووجهات نظر جديدة من خلال استخدام التقنيات الإحصائية التي يمكن أن تساعد في تشكيل نظريات ونماذج التنسيق في المستقبل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقدم هذه الورقة مساهمتنا في تعدين وسائل التواصل الاجتماعي للتطبيقات الصحية المهمة المشتركة 2021. لقد عالجنا جميع المهام الفرعية الثلاثة للمهمة 1: الفرعية (تصنيف التغريدات التي تحتوي على آثار ضارة)، SubTask B (استخراج يمتد النص الذي يحتوي على آثار ضار ة) وSubTask C (دقة الآثار الضارة).استكشفنا العديد من نماذج اللغة القائمة على المحولات المدربة مسبقا وركزنا على بنية تدريب متعددة المهام.بالنسبة للسبع الأول، طبقنا أيضا تقنيات تكبير الخصومة وتشكل مجموعة نموذجية من أجل تحسين متانة التنبؤ.مرتبة نظامنا في المرتبة الأولى في SubTask B مع 0.51 F1 درجة، 0.514 الدقة واستدعاء 0.514.للحصول على التراكج الفرعية، حصلنا على درجة 0.44 F1، 0.49 دقة و 0.39 استدعاء و For Subtask C حصلنا على 0.16 F1 درجة مع 0.16 دقة و 0.17 تذكر.
يركز تحليل المعنويات المستندة إلى جانب جوانب (ABASA) عادة على استخراج الجوانب والتنبؤ بمشاعرهم على جمل فردية مثل مراجعات العملاء. في الآونة الأخيرة، تلقت منصة أخرى من برنامج تقاسم الرأي، وهي منتدى الإجابة على السؤال (QA)، شعبية متزايدة، التي تتراكم ع دد كبير من آراء المستخدم تجاه الجوانب المختلفة. هذا يحفزنا على التحقيق في مهمة ABASA على منتديات ضمان الجودة (ABASA-QA)، تهدف إلى الكشف بشكل مشترك بين الجوانب التي تمت مناقشتها وأسطابات المشاعر الخاصة بهم لفترة من ضمان الجودة. على عكس جمل المراجعة، يتكون زوج ضمان الجودة من جملتين موازيتين، مما يتطلب نمذجة التفاعل لمحاذاة الجانب المذكور في السؤال وأدائن الرأي المرتبط في الإجابة. تحقيقا لهذه الغاية، نقترح نموذجا بتصميم محدد للنمذجة المتعلقة بالتفاعل عن الجوانب عبر الجملة لمعالجة هذه المهمة. يتم تقييم الطريقة المقترحة على ثلاثة مجموعات بيانات حقيقية، وتظهرت النتائج أن نموذجنا يفوق على العديد من خطوط الأساس القوية المعتمدة من النماذج الحكومية ذات الصلة.
كما تم كشف النقاب عنها أن نماذج اللغة المدربة مسبقا (PLMS) هي إلى حد ما قادر على الاعتراف بالمفاهيم النحوية باللغة الطبيعية، فقد تم بذل الكثير من الجهد لتطوير طريقة لاستخراج التقييم الكامل (الثنائي) من PLMS دون تدريب محللين منفصلين. نحن نحسن على هذا النموذج من خلال اقتراح طريقة قائمة على الرسم البياني القائمة على الرسم البياني وتقنية فرعية فعالة من أعلى كوب. علاوة على ذلك، نوضح أنه يمكننا توسيع نطاق تطبيق النهج في إعدادات متعددة اللغات. على وجه التحديد، نظير على أنه من خلال تطبيق طريقتنا على مقدمي اللغات متعددة اللغات، يصبح من الممكن أن يحفز على التقييم غير التافه من الجمل من تسع لغات بطريقة متكاملة وغير مرغقة بلغة، وتحصل على أداء متفوقة أو مماثلة لتلك الخاصة ب PCFGS غير المعروضة. نحن نتحقق أيضا من أن نهجنا قوي للتحويل عبر اللغات. أخيرا، نقدم التحليلات على الأعمال الداخلية لطرأتنا. على سبيل المثال، نكتشف رؤوس الانتباه العالمية التي هي حساسة باستمرار للحصول على معلومات النحوية بغض النظر عن لغة الإدخال.
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط قية غنية لتعزيز عملية التحقق. ومع ذلك، نظرا لعدم وجود إشارات خاضعة للإشراف بالكامل في عملية توليد البرنامج، يمكن استخلاص البرامج الزائفة وعملها، مما يؤدي إلى عدم قدرة النموذج على العمليات المنطقية المفيدة. لمعالجة المشكلات المذكورة أعلاه، في هذا العمل، نقوم بصياغة مهمة التحقق من الحقائق القائمة على الطاولة كإطار لاسترجاع الأدلة والتفكير، حيث اقترح شبكة التحقق من الأدلة على مستوى المنطق وشبكة التحقق القائمة على الرسم البياني (LERGV). على وجه التحديد، نقوم أولا باسترجئة الأدلة التي تشبه البرامج على مستوى المنطق من الجدول المعطى والبيان كدليل تكميلي على الطاولة. بعد ذلك، نقوم بإنشاء رسم بياني لمستوى منطقي لالتقاط العلاقات المنطقية بين الكيانات والوظائف في الأدلة المستردة، وتصميم شبكة التحقق القائمة على الرسم البياني لإجراء المنطق المستندة إلى الرسم البياني على مستوى المنطق بناء على الرسم البياني الذي تم إنشاؤه لتصنيف النهائي علاقة استقامة. النتائج التجريبية على Tabract Tabract القياسي على نطاق واسع تظهر فعالية النهج المقترح.
يمكن استخدام نماذج التعريفات PCFG غير المزودة، والتي تبني الهياكل النحوية من النص الخام، لتقييم مدى ما يمكن الحصول على المعرفة النحوية من المعلومات التوزيعية وحدها. ومع ذلك، فإن العديد من نماذج تحريض PCFG الحديثة مقرها بكلمات، مما يعني أنها لا يمكنها فحص التصفيات الوظيفية مباشرة، والتي قد تقدم معلومات حاسمة للحصول على الاستحواذ النحوي في المتعلمين الأطفال. يقدم هذا العمل أولا نموذج تحريض PCFG العصبي يسمح بإجراء عصبي نظيف لتأثير معلومات الكلمات الفرعية في الحث القوي. توضح تجارب الخطاب الموجهة للأطفال أولا أن إدراج معلومات الكلمات الفرعية ينتج عنه قواعد النمسات الأكثر دقة مع فئات أن نماذج التعريفات المستندة إلى الكلمة لديها صعوبة في العثور، وثانيا أن هذا التأثير يتم تضخيمه في لغات أكثر ثراء مورفولوجية التي تعتمد على التصفيات الوظيفية للتعبير عنها علاقات. يوضح التقييم اللاحق على Treebanks متعددة اللغات أن النموذج مع معلومات الكلمات الفرعية يحقق نتائج أحدث النتائج في العديد من اللغات، مما يدعم نموذج توزيعي للكتساب النحوي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا