ترغب بنشر مسار تعليمي؟ اضغط هنا

الجمع بين التعلم من المناهج والتقطير المعرفي لتوليد الحوار

Combining Curriculum Learning and Knowledge Distillation for Dialogue Generation

358   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لقد أثبتت التعلم المناهج الدراسية، وهي استراتيجية تدريب الآلة التي تغذي حالات التدريب على النموذج من سهولة الصعب، لتسهيل مهمة توليد الحوار. وفي الوقت نفسه، يمكن أن تسفر عن طريقة تقطير المعرفة، منهجية تحويل المعرفة بين المعلمين وشبكات الطلاب دفعة كبيرة من الأداء لنماذج الطلاب. وبالتالي، في هذه الورقة، نقدم مجموعة من التعلم من المناهج الدراسية وتقطير المعرفة لنماذج جيل الحوار الفعالة، حيث يمكن أن يساعد تعلم المناهج الدراسية في تقطير المعارف من جوانب البيانات والنموذج. للبدء، من جانب البيانات، نقوم بتجميع حالات التدريب وفقا لتعقيدها، والتي تحسبها أنواع مختلفة من الميزات مثل طول الجملة والتماسك بين أزواج الحوار. علاوة على ذلك، فإننا نوظف استراتيجية تدريبية عدائية لتحديد تعقيد الحالات من مستوى النموذج. الحدس هو أنه، إذا كان بإمكان التمييز أن يخبر الاستجابة الناتجة عن المعلم أو الطالب، فسيكون الأمر من الصعب على الحالة أن نموذج الطالب لم يتكيف حتى الآن. أخيرا، نستخدم التعلم الذاتي، وهو امتداد لتعلم المناهج الدراسية لتعيين الأوزان لتقطير. في الختام، نقوم بترتيب منهج هرمي يستند إلى الجوانب المذكورة أعلاه لنموذج الطالب بموجب الإرشاد من نموذج المعلم. توضح النتائج التجريبية أن أساليبنا تحقق تحسينات مقارنة مع خطوط الأساس التنافسية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أظهرت نماذج المحادثة العصبية إمكانات كبيرة تجاه توليد ردود بطلاقة وإمعلومات عن طريق إدخال معرفة خلفية خارجية. ومع ذلك، فمن الشائع بناء هذه الحوارات المدرجة في المعرفة، وعادة ما تؤدي النماذج الحالية بشكل سيء عند النقل إلى مجالات جديدة مع عينات تدريب م حدودة. لذلك، فإن بناء نظام حوار مدرج في المعرفة بموجب إعداد الموارد المنخفضة هو قضية حاسمة لا تزال. في هذه الورقة، نقترح إطارا لتعليم تعليمي رواية ثلاث مراحل يستند إلى التعلم الإشرافه ضعيف يفيد من الحوارات على نطاق واسع وقاعدة المعرفة غير المنظمة. للتعاون بشكل أفضل مع هذا الإطار، نضع متغير من المحولات مع فك فك التشفير التي تسهل التعلم المنطلق لتوليد الاستجابة وإدماج المعرفة. تشير نتائج التقييم إلى معيارين إلى أن نهجنا يمكن أن يتفوق على أساليب حديثة أخرى مع بيانات تدريب أقل، وحتى في سيناريو الموارد الصفرية، فإن نهجنا لا يزال ينفذ جيدا.
يحدد اكتشاف الموقف ما إذا كان مؤلف النص مؤهلا لصالح أو محايد هدف معين ويوفر رؤى قيمة في أحداث مهمة مثل تقنين الإجهاض. على الرغم من التقدم الكبير في هذه المهمة، فإن أحد التحديات المتبقية هو ندرة التعليقات التوضيحية. علاوة على ذلك، ركزت معظم الأعمال ال سابقة على تدريبا ثابتا على التسمية التي يتم فيها التخلص منها تشابه ذات معنى بين الفئات أثناء التدريب. لمعالجة هذه التحديات أولا، نقيم هدف متعدد المستهدف وإعدادات تدريب متعددة البيانات من خلال تدريب نموذج واحد على كل مجموعة بيانات ومجموعات من المجالات المختلفة، على التوالي. نظهر أن النماذج يمكن أن تتعلم المزيد من التمثيلات العالمية فيما يتعلق بالأهداف في هذه الإعدادات. ثانيا، يمكننا التحقيق في تقطير المعرفة في اكتشاف الموقف ومراقبة أن نقل المعرفة من نموذج المعلم إلى نموذج الطالب يمكن أن يكون مفيدا في إعدادات التدريب المقترحة. علاوة على ذلك، نقترح طريقة تقطير المعرفة التكيفية (AKD) تطبق تحجيم درجة الحرارة الخاصة بالمثيلات إلى المعلم والتنبؤات الطلابية. تشير النتائج إلى أن نموذج متعدد البيانات يعمل بشكل أفضل على جميع مجموعات البيانات ويمكن تحسينه من قبل AKD المقترح، مما يتفوق على أحدث حالة من الهامش الكبير. نحن نطلق علنا ​​كودنا.
على الرغم من أن تحيز التعرض قد درس على نطاق واسع في بعض مهام NLP، إلا أنه يواجه تحدياته الفريدة في توليد استجابة الحوار، وسيناريو الجيل الممثل الأول إلى مختلف. في الحوار الإنساني الحقيقي، هناك العديد من الردود المناسبة لنفس السياق، ليس فقط مع تعبيرات مختلفة، ولكن أيضا مع مواضيع مختلفة. لذلك، بسبب الفجوة الأكبر بكثير بين العديد من ردود الحقيقة الأرضية والاستجابة الاصطناعية التي تم إنشاؤها، فإن تحيز التعرض أكثر تحديا في مهمة توليد الحوار. ما هو أكثر من ذلك، حيث يشجع MLE النموذج على تعلم الكلمات الشائعة فقط بين ردود الحقيقة المختلفة ، ولكن يتجاهل الأجزاء المثيرة والمحددة، قد يؤدي التحيز التعريض إلى أن يؤدي المزيد إلى مشكلة توليد الاستجابة المشتركة، مثل لا أعرف "وهاها؟" في هذه الورقة، نقترح آلية تحول التكيف الرواية، والتي تتعلم العبور تلقائيا بين التعلم الأساسي للحقيقة وتولد التعلم فيما يتعلق بدرجة مطابقة على مستوى الكلمة، مثل تشابه جيب التمام. تظهر النتائج التجريبية على كل من مجموعة بيانات STC الصينية ومجموعة بيانات Reddit الإنجليزية، أن طريقتنا التكيفية تحقق تحسنا كبيرا من حيث التقييم القائم على المتري والتقييم البشري، مقارنة بنهج تحيز التعرض للدولة القصيرة. يظهر تحليل إضافي حول مهمة NMT أيضا أن طرازنا يمكن أن يحقق تحسنا كبيرا.
تحقق هذه الورقة وتكشف عن العلاقة بين اثنين من التخصصات المتعلقة بآلات التعلم عن كثب، وهي التعلم النشط (AL) وتعلم المناهج الدراسية (CL)، من عدسة العديد من المناهج الرواية.تقدم هذه الورقة أيضا التعلم المناهج الدراسية النشطة (ACL) الذي يحسن AL من خلال ا لجمع بين آل مع CL للاستفادة من الطبيعة الديناميكية لمفهوم المعلومات وكذلك الأفكار البشرية المستخدمة في تصميم الاستدلال المناهج الدراسية.تعرض مقارنة أداء ACL و AL على مجموعة بيانات عامين لمهمة التعرف على الكيان المسماة (NER) فعالية الجمع بين آل و CL باستخدام إطار عملنا المقترح.
بالنسبة لجهاز كمبيوتر يتفاعل بشكل طبيعي مع إنسان، يجب أن يكون يشبه الإنسان.في هذه الورقة، نقترح نموذج توليد الاستجابة العصبي مع التعلم متعدد المهام للجيل والتصنيف، مع التركيز على العاطفة.يتم تدريب نموذجنا على أساس بارت (لويس وآخرون.، 2020)، وهو نموذج ترميز ترميز محول مدرب مسبقا، لتوليد الردود والاعتراف بالمشاعر في وقت واحد.علاوة على ذلك، فنحن نثق خسائر المهام للتحكم في تحديث المعلمات.تظهر التقييمات التلقائية والتقييمات الدليلية للجماعة الجماعية أن النموذج المقترح يجعل الردود التي تم إنشاؤها أكثر وعيا بنفسك.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا