تتطلب مربعات الحوار التوصية النظام لبناء رابطة اجتماعية مع المستخدمين للحصول على الثقة وتطوير تقارب من أجل زيادة فرصة توصية ناجحة. من المفيد تقسيم هذه المحادثات، مثل هذه المحادثات مع مجموعات متعددة (مثل الدردشة الاجتماعية، الإجابة على السؤال، والتوصية، وما إلى ذلك)، بحيث يمكن للنظام استرداد المعرفة المناسبة بدقة أفضل بموجب علمي مختلفين. في هذه الورقة، نقترح إطارا موحدا للحوار المشترك متعدد الهيئات المستندة إلى المعرفة: نظام التوصية المحسن المعزز للمعارف (KERS). نتنبأ أولا بتسلسل من الفئة الفرعية واستخدامها لتوجيه نموذج الحوار لتحديد المعرفة من مجموعة فرعية من الرسم البياني المعرفي الحالي. ثم نقترح ثلاث آليات جديدة لتصفية المعرفة الصاخبة وتعزيز إدراج المعرفة التي تنظيفها في عملية توليد استجابة الحوار. تظهر التجارب أن طريقتنا تحصل على نتائج حديثة على مجموعة بيانات Dreecdial في كل من التقييم التلقائي والبشري.
Recommendation dialogs require the system to build a social bond with users to gain trust and develop affinity in order to increase the chance of a successful recommendation. It is beneficial to divide up, such conversations with multiple subgoals (such as social chat, question answering, recommendation, etc.), so that the system can retrieve appropriate knowledge with better accuracy under different subgoals. In this paper, we propose a unified framework for common knowledge-based multi-subgoal dialog: knowledge-enhanced multi-subgoal driven recommender system (KERS). We first predict a sequence of subgoals and use them to guide the dialog model to select knowledge from a sub-set of existing knowledge graph. We then propose three new mechanisms to filter noisy knowledge and to enhance the inclusion of cleaned knowledge in the dialog response generation process. Experiments show that our method obtains state-of-the-art results on DuRecDial dataset in both automatic and human evaluation.
المراجع المستخدمة
https://aclanthology.org/
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب
في هذا العمل، نستفيد المعرفة المنوية في شكل مسارات المعرفة لإقامة صلات بين الجمل، كشكل من أشكال تفسير المعرفة الضمنية. يمكن أن تكون هذه الاتصالات مباشرة (مسارات مفردة) أو تتطلب مفاهيم وسيطة (مسارات Multihop). لبناء مثل هذه المسارات تجمع بين نوعين نمو
تقوم معظم طرق التعلم في مجال التعزيز لسياسة الحوار، قم بتدريب تعلم وكيل مركزي يختار إجراء مشترك محدد مسبقا اسم النطاق ونوع النية واسم الفتحة. يعاني وكيل الحوار المركزي من متطلبات العديد من متطلبات تفاعل المستخدمين لعمل المستخدمين بسبب مساحة العمل الك
الحوار المرئي هو مهمة الإجابة على سلسلة من الأسئلة التي تأسست في صورة باستخدام سجل الحوار السابق كسياق. في هذه الورقة، ندرس كيفية معالجة تحديين أساسيين لهذه المهمة: (1) التفكير في الهياكل الدلالية الأساسية بين جولات الحوار و (2) تحديد العديد من الإجا
مع ظهور Advent of Store argeddings، زادت الاهتمام تجاه نهج التصنيف العصبي لاسترجاع المعلومات بشكل كبير. ومع ذلك، ظلت جائبتان مهمان إلى حد كبير: I) عادة ما تتكون الاستعلامات من عدد قليل من الكلمات الرئيسية فقط، مما يزيد من الغموض ويجعل سياقه أكثر صعوب