مع ظهور Advent of Store argeddings، زادت الاهتمام تجاه نهج التصنيف العصبي لاسترجاع المعلومات بشكل كبير. ومع ذلك، ظلت جائبتان مهمان إلى حد كبير: I) عادة ما تتكون الاستعلامات من عدد قليل من الكلمات الرئيسية فقط، مما يزيد من الغموض ويجعل سياقه أكثر صعوبة، والثاني) أداء التصنيف العصبي على المستندات غير الإنجليزية لا يزال مرهقا بسبب نقص مجموعات البيانات المسمى. في هذه الورقة، نقدم سيدي (استرجاع المعلومات المحسنة) للتخفيف من المشكلتين من خلال الاستفادة من معلومات معنى النص. يكمن في جوهر نهجنا آلية توسيع عملية استعلام متعددة اللغات الرواية بناء على غزانة إحساس النصوص التي توفر تعريفات المعنى بأنها معلومات دلالية إضافية للاستعلام. الأهم من ذلك، نحن نستخدم الحواس كجسر عبر اللغات، وبالتالي السماح لطرازنا بأداء أفضل بكثير من بدائلها الخاضعة للإشراف وغير المعروضة عبر اللغات الفرنسية والألمانية والإيطالية والإسبانية على العديد من المعايير المفصيلة المفكف، بينما يتم تدريبها على بيانات Robust04 الإنجليزية فقط. نطلق سراح سيدي في https://github.com/sapienzanlp/sir.
With the advent of contextualized embeddings, attention towards neural ranking approaches for Information Retrieval increased considerably. However, two aspects have remained largely neglected: i) queries usually consist of few keywords only, which increases ambiguity and makes their contextualization harder, and ii) performing neural ranking on non-English documents is still cumbersome due to shortage of labeled datasets. In this paper we present SIR (Sense-enhanced Information Retrieval) to mitigate both problems by leveraging word sense information. At the core of our approach lies a novel multilingual query expansion mechanism based on Word Sense Disambiguation that provides sense definitions as additional semantic information for the query. Importantly, we use senses as a bridge across languages, thus allowing our model to perform considerably better than its supervised and unsupervised alternatives across French, German, Italian and Spanish languages on several CLEF benchmarks, while being trained on English Robust04 data only. We release SIR at https://github.com/SapienzaNLP/sir.
المراجع المستخدمة
https://aclanthology.org/
نعرض في هذا البحث مودل لتوسيع الاستعلامات التلقائية في نظم استرجاع المعلومات متعددة اللغات في المجال الطبي. يوظف المودل المستخدم ترجمة آلية للاستعلام في اللغة المصدر الى لغة المستندات وتابع انحدار خطي لتوقّع دقة الاسترجاع لكل استعلام مترجم عند توسيع
إن إدخال طلاب المعلوماتيين الطبية الحيوية (BMI) للمعالجة اللغوية الطبيعية (NLP) يتطلب موازنة العمق الفني مع المعرفة العملية لمعالجة الاحتياجات التي تركز على التطبيق.قمنا بتطوير مجموعة من ثلاثة أنشطة إدخال طلاب BMI تمهيدي لاسترجاع المعلومات مع NLP، وا
يهدف هذا البحث إلى اقتراح طريقة لتحسين نتائج استرجاع المعلومات العربية دلالياً
و ذلك بتلخيص النصوص تجريدياً (Abstractive Summary) باستخدام خوارزميات
معالجة اللغات الطبيعية (NLP), حل غموض معاني الكلمات (WSD) و قياس التشابهية
الدلالية (Semantic Si
تصنيف النص هو أداة مركزية في NLP. ومع ذلك، عندما ترتبط الفصول المستهدفة بشدة مع السمات النصية الأخرى، يمكن أن تلتقط نماذج تصنيف النصوص "ميزات" خاطئة، مما يؤدي إلى التعميم والتحيزات السيئة. في تحليل وسائل التواصل الاجتماعي، هذه المشكلة أسطح فئات المست
نربط النماذج العصبية للتحليل المورفولوجي والجيل والليمون للغات الغنية بالمورفولوجيا.نقدم طريقة لاستخراج كمية كبيرة من البيانات التدريبية تلقائيا من FSTS لمدة 22 لغة، منها 17 مليار بالانقراض.تتبع النماذج العصبية نفس التشريع مثل FSTS من أجل تحقيقها لأن