إعادة صياغة إعادة صياغة مهمة مهمة في معالجة اللغة الطبيعية. تركز الأشغال السابقة على توليد إعادة صياغة مستوى الجملة، مع تجاهل توليد إعادة صياغة مستوى المستند، وهي مهمة أكثر تحديا وقيمة. في هذه الورقة، نستكشف مهمة إعادة صياغة نص عن طريق الوثيقة لأول مرة والتركيز على التنوع بين الجملة من خلال النظر في إعادة كتابة الجملة وإعادة ترتيبها. نقترح Corpg (توليد إعادة صياغة البحث عن النصوص الموجهة)، والتي تتمتع بالطرازات الرسم البياني Gru لتشفير الرسم البياني لعلاقة الاتساق والحصول على تمثيل مدرك التماسك لكل جملة، والتي يمكن استخدامها لإعادة ترتيب جمل الإدخال المتعددة (المحورة). نحن نقوم بإنشاء مجموعة بيانات صياغة على مستوى الوثيقة Pseudo لتدريب Corpg. تظهر نتائج التقييم التلقائي أن Corpg تفوقت على العديد من النماذج الأساسية القوية على درجات Bertscore وتنوعها. يوضح التقييم البشري أيضا أن نموذجنا يمكن أن يولد إعادة صياغة المستندات بمزيد من التنوع والحفاظ الدلالي.
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.
المراجع المستخدمة
https://aclanthology.org/
نقترح التحكم في إعادة صياغة إعادة صياغة الصياغة من خلال الهياكل النحوية المستهدفة المختارة بعناية لتوليد المزيد من صياغة أعلى جودة أعلى وجودة.نموذجنا، Aesop، يرفع نموذج لغة مسبقين ويضيف عن عمد تم اختيار عنصر تحكم ترنيع عمدا عبر وحدة التحديد القائمة ع
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي
في هذه الورقة، نحقق في مشكلة تعميم المجال (DG) للحصول على تحديد صياغة الإشراف (PI).نلاحظ أن أداء نماذج PI الحالية يتدهور بشكل كبير عند اختباره في مجال خارج التوزيع (OOD).نحن تخمين أنه ناجم عن التعلم الاختصار، أي هذه النماذج تميل إلى الاستفادة من الكل
تركز هذه الورقة على إعادة صياغة إعادة صياغة النص، وهي مهمة توليد اللغة الطبيعية المدروسة على نطاق واسع في NLP.مع تطور النماذج العصبية، أظهرت أبحاث توليد إعادة صياغة التحول التدريجي إلى الأساليب العصبية في السنوات الأخيرة.وقد قدم ذلك بهيئات تمثيل سياق
تتمثل التعريف بإعادة الصياغة (PI)، وهي مهمة أساسية في معالجة اللغة الطبيعية، هي تحديد ما إذا كانت الجملتين تعبر عن نفس المعنى المماثل، وهي مشكلة تصنيف ثنائية. في الآونة الأخيرة، كانت النماذج اللغوية المدربة مسبقا بيرت هي خيارا شائعا لأطر نماذج PI الم