ترغب بنشر مسار تعليمي؟ اضغط هنا

نحو تحديد إعادة صياغة النطاق العام من خلال تجنب التعلم الاختصار

Towards Domain-Generalizable Paraphrase Identification by Avoiding the Shortcut Learning

545   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نحقق في مشكلة تعميم المجال (DG) للحصول على تحديد صياغة الإشراف (PI).نلاحظ أن أداء نماذج PI الحالية يتدهور بشكل كبير عند اختباره في مجال خارج التوزيع (OOD).نحن تخمين أنه ناجم عن التعلم الاختصار، أي هذه النماذج تميل إلى الاستفادة من الكلمات الإعلانية الفريدة لمجموعة بيانات أو مجال معين.لتخفيف هذه المشكلة وتعزيز قدرة DG، نقترح إطار PI بناء على النقل الأمثل (OT).تجبر طريقةنا على الشبكة لتعلم الميزات اللازمة لجميع الكلمات في الإدخال، مما يخفف من مشكلة التعلم الاختصار.تظهر النتائج التجريبية أن طريقتنا تعمل على تحسين قدرة DG على نماذج PI.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تشير الدراسات الحديثة إلى أن نماذج NLU عرضة للإعتماد على ميزات الاختصار للتنبؤ، دون تحقيق فهم اللغة الحقيقية. نتيجة لذلك، تفشل هذه النماذج في التعميم إلى بيانات الواقع الحقيقي خارج التوزيع. في هذا العمل، نظهر أن الكلمات الموجودة في مجموعة تدريب NLU ي مكن أن تكون على غرارها كتوزيع طويل الذيل. هناك نتائج توصلتان: 1) نماذج NLU لها تفضيل قوي للميزات الموجودة في رأس التوزيع الطويل الذيل، و 2) يتم التقاط ميزات الاختصار خلال التكرارات القليلة المبكرة للغاية للتدريب النموذجي. يتم استخدام هاتين الملاحمينين أيضا لصياغة قياس يمكن تحديد درجة الاختصار من كل عينة تدريبية. استنادا إلى قياس الاختصار هذا، نقترح وضع إطار تخفيف الاختصار LGTR، لقمع النموذج من إصدار تنبؤات مكثفة للعينات مع درجة اختصار كبيرة. النتائج التجريبية على ثلاثة معايير NLU توضح أن شرح التوزيع طويل الذيل يعكس بدقة سلوك التعلم الاختصار لنماذج NLU. يشير التحليل التجريبي كذلك إلى أن LGTR يمكن أن يحسن دقة التعميم على بيانات OOD، مع الحفاظ على الدقة على بيانات التوزيع.
إعادة صياغة إعادة صياغة مهمة مهمة في معالجة اللغة الطبيعية. تركز الأشغال السابقة على توليد إعادة صياغة مستوى الجملة، مع تجاهل توليد إعادة صياغة مستوى المستند، وهي مهمة أكثر تحديا وقيمة. في هذه الورقة، نستكشف مهمة إعادة صياغة نص عن طريق الوثيقة لأول م رة والتركيز على التنوع بين الجملة من خلال النظر في إعادة كتابة الجملة وإعادة ترتيبها. نقترح Corpg (توليد إعادة صياغة البحث عن النصوص الموجهة)، والتي تتمتع بالطرازات الرسم البياني Gru لتشفير الرسم البياني لعلاقة الاتساق والحصول على تمثيل مدرك التماسك لكل جملة، والتي يمكن استخدامها لإعادة ترتيب جمل الإدخال المتعددة (المحورة). نحن نقوم بإنشاء مجموعة بيانات صياغة على مستوى الوثيقة Pseudo لتدريب Corpg. تظهر نتائج التقييم التلقائي أن Corpg تفوقت على العديد من النماذج الأساسية القوية على درجات Bertscore وتنوعها. يوضح التقييم البشري أيضا أن نموذجنا يمكن أن يولد إعادة صياغة المستندات بمزيد من التنوع والحفاظ الدلالي.
تتمثل التعريف بإعادة الصياغة (PI)، وهي مهمة أساسية في معالجة اللغة الطبيعية، هي تحديد ما إذا كانت الجملتين تعبر عن نفس المعنى المماثل، وهي مشكلة تصنيف ثنائية. في الآونة الأخيرة، كانت النماذج اللغوية المدربة مسبقا بيرت هي خيارا شائعا لأطر نماذج PI الم ختلفة، ولكن جميع الطرق الحالية تقريبا تنظر في نص مجال عام. عندما يتم تطبيق هذه الأساليب على مجال معين، لا يمكن أن تكتب النماذج الحالية تنبؤات دقيقة بسبب نقص المعرفة المهنية. في ضوء هذا التحدي، نقترح إطارا جديدا، وهو، الذي يمكن أن يستفيد من المعرفة الخارجية غير المنظمة في ويكيبيديا لتحديد المواطن بدقة. نقترح علما مخلاصة المعرفة بالمفاهيم المتعلقة بحكمات معينة من ويكيبيديا عبر نموذج BM25. بعد استرداد المعرفة المخططة ذات الصلة، يجعل التنبؤات بناء على كل من المعلومات الدلالية للجملتين ومعرفة الخطوط العريضة. إضافة إلى ذلك، نقترح آلية Gating تجميع التنبؤ الدلالي القائم على المعلومات والتنبؤ القائم على المعرفة. تتم إجراء تجارب واسعة على مجموعة بيانات عامين: العرض (مجموعة بيانات مجال علوم الكمبيوتر) و Clinicalsts2019 (مجموعة بيانات مجال الطب الحيوي). تشير النتائج إلى أن الأساليب المتوفرة التي تتفوقت على أحدث الأحوال.
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي النجاح الأخير للتعلم المقاوم للتناقض التي أثبتت قوتها في مهام استخراج ميزة غير مدفوعة. تتمثل الفكرة في تصميم خسائرتين متباينتين فيما يتعلق بالمحتوى والأسلوب من خلال النظر في خصائص المشكلة أثناء التدريب. إحدى الممتلكات هي أن الجملة المستهدفة تشترك في نفس المحتوى مع جملة المصدر، والخصائص الثانية هي أن الجملة المستهدفة تشارك نفس النمط مع Exemplar. يتم دمج هذين الخسائرتين للتناقض في نموذج فك التشفير العام. تثبت التجارب على مجموعة بيانات اثنين، وهي QQP-Pos و Paranmt، فعالية خسائرنا القاطعة المقترحة.
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال مسألة، إلا أنها قد تفشل في توليد صياغة هادفة بسبب عدم وجود إشارات الإشراف. في هذا العمل، نذهب إلى أبعد من النماذج الحالية واقتراح نهج رواية لتوليد صياغة عالية الجودة مع بيانات الإشراف الضعيف. على وجه التحديد، نتعامل مع مشكلة توليد إعادة صياغة الإشراف ضعيفا من خلال: (1) الحصول على جمل متوازية ضعيفة وفرة عن طريق توسيع إعادة صياغة الزائفة القائمة على استرجاع؛ و (2) تطوير إطار تعليمي التعلم إلى تحديد عينات قيمة تدريجيا لضبط النموذج اللغوي المدرب مسبقا في مهمة إعادة توجيهها مسبقا في مهمة إعادة الصياغة الخطية. نوضح أن نهجنا يحقق تحسينات كبيرة على النهج القائمة غير المدمرة، وهو ما يمكن قابلة للمقارنة في الأداء مع أحدث من الفنون المغلفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا