ترغب بنشر مسار تعليمي؟ اضغط هنا

استخراج العلاقات شبه الإشراف عبر التدريب الذاتي التيلة الإضافية

Semi-supervised Relation Extraction via Incremental Meta Self-Training

684   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لتخفيف الجهود البشرية من الحصول على شروح واسعة النطاق، تهدف أساليب استخراج العلاقات شبه الإشراف إلى الاستفادة من البيانات غير المسبقة بالإضافة إلى التعلم من عينات محدودة. تعاني أساليب التدريب الذاتي الحالية من مشكلة الانجراف التدريجي، حيث يتم دمج تسميات زائفة صاخبة على البيانات غير المسبقة أثناء التدريب. لتخفيف الضوضاء في الملصقات الزائفة، نقترح طريقة تسمى METASRE، حيث تقوم شبكة توليد علامات العلاقة بإنشاء تقييم دقيق للجودة على التسميات الزائفة من خلال (META) التعلم من المحاولات الناجحة والفاشية على شبكة تصنيف العلاقة كهدف META إضافي. لتقليل تأثير الملصقات الزائفة الصاخبة، يعتمد METASRE مخطط استغلال ومستودعات زائفة تقيم جودة تسمية الزائفة على العينات غير المستمرة وتستغل فقط تسميات الزائفة عالية الجودة في أزياء التدريب الذاتي لزيادة العينات المصنفة بشكل تدريجي لكل من المتانة والدقة وبعد النتائج التجريبية على مجموعة بيانات عامة تثبت فعالية النهج المقترح.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

النماذج الخاضعة للإشراف المستمرة تحظى بشعبية كبيرة بالنسبة لاستخراج العلاقة لأنه يمكننا الحصول على كمية كبيرة من البيانات التدريبية باستخدام طريقة الإشراف البعيدة دون شرح بشري.في الإشراف البعيد، تعتبر الجملة بمثابة مصدر Tuple إذا كانت الجملة تحتوي عل ى كيانا من Tuple.ومع ذلك، فإن هذه الحالة متساهلة للغاية ولا يضمن وجود معلومات خاصة بالعلاقة ذات الصلة في الجملة.على هذا النحو، تحتوي بيانات التدريب الإشراف على الكثير من الضوضاء التي تؤثر سلبا على أداء النماذج.في هذه الورقة، نقترح آلية تصفية الفرقة الذاتية لتصفية العينات الصاخبة أثناء عملية التدريب.نقيم إطار عملنا المقترح في مجموعة بيانات نيويورك تايمز التي تم الحصول عليها عبر إشراف بعيد.تجاربنا مع العديد من نماذج استخراج العلاقات العصبية متعددة الحديثة تظهر أن آلية التصفية المقترحة تعمل على تحسين متانة النماذج ويزيد من درجات F1 الخاصة بهم.
لا يزال الاستحواذ على بيانات التدريب المتعدد اللغات يمثل تحديا في غزالة معنى الكلمة (WSD).لمعالجة هذه المشكلة، اقترحت النهج غير الخاضعة للكالة لإنشاء التعليقات التوضيحية بالمعنى تلقائيا لتدريب أنظمة WSD الخاضعة للإشراف.نقدم ثلاث طرق جديدة لإنشاء كورب ورا المعشوفة بالشعور التي تستفيد الترجمات، وثبات الموازية، والموارد المعجمية، وكذلك تضمينات السياق والتركيب.تطبق أسلوبنا شبه الإشراف ترجمة الجهاز لنقل التعليقات التوضيحية القائمة إلى لغات أخرى.طرقنا اثنين من الأساليب غير الخاضعة لعمليات إعادة صياغة الشرح بالمعنى الناتج عن نظام WSD القائم على المعرفة عبر الترجمات المعجمية في كوربوس متوازي.نحصل على نتائج حديثة على معايير WSD القياسية.
تتطلب شبكات العصبية العميقة الحديثة من بين الفن بيانات تدريبية ذات صلة واسعة النطاق غالبا ما تكون مكلفة للحصول على أو غير متوفرة للعديد من المهام. لقد ثبت أن الإشراف ضعيف في شكل قواعد خاصة بالمجال مفيدا في مثل هذه الإعدادات لإنشاء بيانات التدريب المس مى ضعيف. ومع ذلك، فإن التعلم مع القواعد الضعيفة يتحدى بسبب طبيعته المهمة والصاخبة المتأصلة. تحدي إضافي هو تغطية القاعدة والتداخل، حيث يعتبر العمل المسبق على الإشراف الضعيف فقط الحالات التي تغطيها قواعد ضعيفة، وبالتالي تاركة بيانات قيمة غير مسفدة وراءها. في هذا العمل، نطور إطارا ضعيفا للإشراف (Astra) الذي يرفع جميع البيانات المتاحة لمهمة معينة. تحقيقا لهذه الغاية، نستفيد البيانات الخاصة بمهارات العمل من خلال التدريب الذاتي مع نموذج (الطالب) الذي يعتبر تمثيلات السياق ويتوقع التسميات الزائفة على الحالات التي قد لا تغطيها قواعد ضعيفة. ونحن نضع كذلك شبكة انتباه القاعدة (المعلم) التي تتعلم كيفية إجمالي الملصقات الزائفة الطلابية مع ملصقات القاعدة الضعيفة، مشروطة بإخلاصها والسياق الأساسي للمثيل. أخيرا، نقوم بإنشاء هدف تعليمي شبه إشراف للتدريب المنتهي بالبيانات غير المستمرة والقواعد الخاصة بالمجال، وكمية صغيرة من البيانات المسمى. توضح تجارب واسعة على ستة مجموعات بيانات قياسية لتصنيف النص فعالية نهجنا مع تحسينات كبيرة على خطوط الأساس الحديثة.
لقد تم استخراج العلاقات عبر مجموعة نصية كبيرة غير مستمدة نسبيا في NLP، لكنه مهم للغاية بالنسبة لمجالات عالية القيمة مثل الطب الحيوي، حيث يكون الحصول على استدعاء عالية من أحدث النتائج أمر حاسم للتطبيقات العملية. بالمقارنة مع استخراج المعلومات التقليدي ة المحصورة على تمديد النص القصير، فإن استخراج العلاقات على مستوى المستند يواجه تحديات إضافية في كل من الاستدلال والتعلم. وبالنظر إلى تمديدات نصية أطول، فإن الهندسة العصبية الحديثة هي الإشراف الذاتي الأقل فعالية ومحددة المهام مثل الإشراف البعيد يصبح صاخبا جدا. في هذه الورقة، نقترح انحلال استخراج العلاقات على مستوى الوثيقة في الدقة المتعلقة بالكشف عن العلاقة والحجة، مما أدى إلى إلهام من دلالات ديفيدسون. تمكننا هذا من دمج نماذج الخطاب الصريحة والاستفادة من الإشراف الذاتي المعياري لكل مشكلة فرعية، وهو أقل عرضة للضوضاء ويمكن أن يكون مزيدا من النهايات المكررة عبر التباين. نقوم بإجراء تقييم شامل في قراءة الآلة الطبية الحيوية لعلم الأورام الدقيقة، حيث تذكر علاقة الفقرة الشاملة سائدة. تتفوق طريقةنا على الدولة السابقة للفن، مثل التعلم متعدد النطاق والشبكات العصبية الرسمية، بأكثر من 20 نقطة F1 المطلقة. وانطبق الربح بشكل خاص بين أكثر حالات العلاقات الأكثر تحديا التي لا تحدث حججها في فقرة.
تهدف استخراج العلاقات المفتوحة (Openre) إلى استخراج أنواع العلاقات الجديدة من Open-Domain Corpora، والذي يلعب دورا مهما في إكمال مخططات العلاقات لقواعد المعرفة (KBS). يلقي معظم طرق Openre بأنواع العلاقات المختلفة بمعزلات دون النظر في الاعتماد الهرمي. نقول أن OPETRE هو بطبيعته في اتصال وثيق مع التسلسلات الهرمية العلاقة. لإنشاء اتصالات ثنائية الاتجاه بين التسلسل الهرمي للفينت والعلاقة، نقترح مهمة استخراج العلاقات الهرمية المفتوحة وتقديم إطار رواية OHRE للمهمة. نقترح نماذج تدريبية تدريبية هرمية هرمية ديناميكية وتسلسل تدرس تدرس تدريسيا، لإدماج معلومات التسلسل الهرمي بشكل فعال في تمثيلات العلاقة لاستخراج العلاقات الأفضل أفضل. نقدم أيضا خوارزمية للتوسع التسلسل الهرمي من أعلى إلى أسفل لإضافة العلاقات المستخرجة إلى التسلسلات الهرمية الموجودة مع إمكانية الترجمة الترجمة الشاملة. تظهر تجارب شاملة أن OHRE تتفوق على النماذج الحديثة من خلال هامش كبير على كل من تجميع العلاقات والتوسع التسلسل الهرمي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا