النماذج الخاضعة للإشراف المستمرة تحظى بشعبية كبيرة بالنسبة لاستخراج العلاقة لأنه يمكننا الحصول على كمية كبيرة من البيانات التدريبية باستخدام طريقة الإشراف البعيدة دون شرح بشري.في الإشراف البعيد، تعتبر الجملة بمثابة مصدر Tuple إذا كانت الجملة تحتوي على كيانا من Tuple.ومع ذلك، فإن هذه الحالة متساهلة للغاية ولا يضمن وجود معلومات خاصة بالعلاقة ذات الصلة في الجملة.على هذا النحو، تحتوي بيانات التدريب الإشراف على الكثير من الضوضاء التي تؤثر سلبا على أداء النماذج.في هذه الورقة، نقترح آلية تصفية الفرقة الذاتية لتصفية العينات الصاخبة أثناء عملية التدريب.نقيم إطار عملنا المقترح في مجموعة بيانات نيويورك تايمز التي تم الحصول عليها عبر إشراف بعيد.تجاربنا مع العديد من نماذج استخراج العلاقات العصبية متعددة الحديثة تظهر أن آلية التصفية المقترحة تعمل على تحسين متانة النماذج ويزيد من درجات F1 الخاصة بهم.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
المراجع المستخدمة
https://aclanthology.org/
في استخراج العلاقة، يستخدم الإشراف البعيد على نطاق واسع لتسمية مجموعة بيانات تدريبية واسعة النطاق عن طريق محاذاة قاعدة المعرفة بالنص غير منظم. افترضت أن معظم الدراسات الموجودة في هذا المجال هناك قدر كبير من النص المركزي غير منظم. ومع ذلك، في الممارسة
لتخفيف الجهود البشرية من الحصول على شروح واسعة النطاق، تهدف أساليب استخراج العلاقات شبه الإشراف إلى الاستفادة من البيانات غير المسبقة بالإضافة إلى التعلم من عينات محدودة. تعاني أساليب التدريب الذاتي الحالية من مشكلة الانجراف التدريجي، حيث يتم دمج تسم
نقترح نهجا متعدد المهام، وهو نهج احتمالي لتسهيل استخراج العلاقات بالإشراف المستمر عن طريق إحضار أوثق تمثيل الجمل التي تحتوي على نفس أزواج قاعدة المعرفة.لتحقيق ذلك، نحن نحيز المساحة الكامنة من الجمل عبر السيارات الآلية (VAE) التي يتم تدريبها بشكل مشتر
يقلل اعتراف الكيان المسمى بشكل مسمى (DS-NER) بكفاءة تكاليف العمالة بل في الوقت نفسه يعاني من ضوضاء الملصقات بسبب الافتراض القوي للإشراف البعيد.عادة ما تشتمل الحالات المسماة بشكل خاطئ على أرقام التعليقات التوضيحية غير المكتملة وغير الدقيقة، في حين أن
استخراج العلاقات الإشراف على نطاق واسع يستخدم على نطاق واسع في بناء قواعد المعرفة بسبب كفاءته العالية.ومع ذلك، فإن الحالات التي تم الحصول عليها تلقائيا ذات جودة منخفضة مع العديد من الكلمات غير ذات الصلة.بالإضافة إلى ذلك، يؤدي الافتراض القوي للإشراف ا