تهدف الترجمة الآلية المتنوعة إلى توليد ترجمات لغة مستهدفة مختلفة عن عقوبة لغة مصدر معينة. للاستفادة من العلاقة الخطية في مجال الجملة الكامنة التي أدخلت من خلال التدريب المزيج، نقترح طريقة رواية، خلطتيبات، لتوليد ترجمات مختلفة عن جملة الإدخال من خلال الاسترجاء الخطي مع أزواج من الجملة المختلفة من كوربوس التدريب أثناء فك التشفير. لزيادة تحسين الإخلاص وتنوع الترجمات، نقترح مقاربتين بسيطة ولكنها فعالة لتحديد أزواج جملة متنوعة في كوربوس التدريب وضبط وزن الاستيفاء لكل زوج في المقابل. علاوة على ذلك، من خلال التحكم في وزن الاستيفاء، يمكن لطريقتنا تحقيق المفاضلة بين الإخلاص والتنوع دون أي تدريب إضافي، وهو مطلوب في معظم الأساليب السابقة. تتم تجارب WMT'16 EN-RO، WMT'14 EN-DE، و WMT'17 Zh-en لإظهار أن طريقتنا تتفوق بشكل كبير على جميع أساليب الترجمة الآلية المتنوعة السابقة.
Diverse machine translation aims at generating various target language translations for a given source language sentence. To leverage the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, MixDiversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus during decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT'16 en-ro, WMT'14 en-de, and WMT'17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.
المراجع المستخدمة
https://aclanthology.org/
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت
يتم استخدام أخذ العينات المجدولة على نطاق واسع للتخفيف من مشكلة تحيز التعرض الترجمة الآلية العصبية. الدافع الأساسي هو محاكاة مشهد الاستدلال أثناء التدريب من خلال استبدال الرموز الأرضية مع الرموز الرائعة المتوقعة، وبالتالي سد الفجوة بين التدريب والاست
وقد مكن التحول إلى النماذج العصبية في إحالة الجيل التعبير (REG) المزيد من النماذج الطبيعية، ولكن بتكلفة الترجمة الترجمة الشفوية.نجاد بأن دمج المنطق العملي في استنتاج نماذج التوليد غير المرجعية للسياق يمكن أن يتجاوز سمات REG التقليدية والعملية، لأن هذ
النموذج المهيمن للتحلل الدلالي في السنوات الأخيرة هو صياغة تحليل كمركز تسلسل إلى تسلسل، وتوليد تنبؤات مع فك تراجع التسلسل التلقائي.في هذا العمل، نستكشف نموذجا بديلا.نقوم بصياغة تحليل دلالي كهامة تحليل التبعية، وتطبيق تقنيات فك التشفير المستندة إلى ال
تم استخدام نماذج ترميز فك التشفير بشكل شائع للعديد من المهام مثل الترجمة الآلية وتوليد الاستجابة.كما ذكرت البحث السابق، تعاني هذه النماذج من توليد التكرار الزائد.في هذا البحث، نقترح آلية جديدة لنماذج تشفير التشفير التي تقدر الاختلاف الدلالي في جملة م