تم استخدام نماذج ترميز فك التشفير بشكل شائع للعديد من المهام مثل الترجمة الآلية وتوليد الاستجابة.كما ذكرت البحث السابق، تعاني هذه النماذج من توليد التكرار الزائد.في هذا البحث، نقترح آلية جديدة لنماذج تشفير التشفير التي تقدر الاختلاف الدلالي في جملة مصدر قبل وبعد تغذية في نموذج فك التشفير لالتقاط الاتساق بين الجانبين.تساعد هذه الآلية في تقليل الرموز التي تم إنشاؤها مرارا وتكرارا لمجموعة متنوعة من المهام.نتائج التقييم على مجموعات بيانات توليد الترجمة والاستجابة المتاحة للجمهورية توضح فعالية اقتراحنا.
Encoder-decoder models have been commonly used for many tasks such as machine translation and response generation. As previous research reported, these models suffer from generating redundant repetition. In this research, we propose a new mechanism for encoder-decoder models that estimates the semantic difference of a source sentence before and after being fed into the encoder-decoder model to capture the consistency between two sides. This mechanism helps reduce repeatedly generated tokens for a variety of tasks. Evaluation results on publicly available machine translation and response generation datasets demonstrate the effectiveness of our proposal.
المراجع المستخدمة
https://aclanthology.org/
تقدم الورقة أربع نماذج مقدمة إلى الجزء 2 من المهمة المشتركة Sigmorphon 2021 0، التي تهدف إلى تكرار الأحكام الإنسانية على انعطاف أحادي الإكسآت.هدفنا هو استكشاف فائدة الجمع بين الأنماط التناظرية التي تم تجميعها مسبقا مع بنية تشفير فك الترميز.تم تصميم ن
في هذه الورقة، نقدم طريقة جديدة لتدريب نموذج تحسين الكتابة تتكيف مع لغة الكاتب الأولى (L1) التي تتجاوز تصحيح الخطأ النحوي (GEC).بدون استخدام بيانات التدريب المشروح، فإننا نعتمد فقط على نماذج اللغة المدربة مسبقا بشكل جيد مع الترجمة المرجانية المتوازية
نحن غالبا ما نستخدم الاضطرابات لتنظيم النماذج العصبية.بالنسبة للكشف عن المشفر العصبي، طبقت الدراسات السابقة أخذ العينات المجدولة (بنغيو وآخرون.، 2015) والاضطرابات الخصومة (SATO et al.، 2019) كشراءات ولكن هذه الطرق تتطلب وقتا حسابيا كبيرا.وبالتالي، فإ
نظرا لفعاليتها وأدائها، اجتذب نموذج الترجمة المحولات اهتماما واسعا، مؤخرا من حيث النهج القائمة على التحقيق. يركز العمل السابق على استخدام أو التحقيق في الميزات اللغوية المصدر في التشفير. حتى الآن، فإن الطريقة التي تتطور فيها ترجمة كلمة تتطور في طبقات
تحصل آليات النسخ بشكل صريح على الرموز دون تغيير من تسلسل المصدر (الإدخال) لإنشاء تسلسل الهدف (الإخراج) ضمن إطار SEQ2SEQ العصبي.ومع ذلك، فإن معظم آليات النسخ الحالية تفكر فقط في نسخ كلمة واحدة من الجمل المصدر، مما يؤدي إلى فقدان الرموز الأساسية أثناء