الجيل السردي هو مهمة NLP مفتوحة العضوية التي يولد فيها نموذج قصة إعطاء موجه.المهمة تشبه توليد الاستجابة العصبية لل Chatbots؛ومع ذلك، غالبا ما لا يتم تطبيق الابتكارات في توليد الاستجابة على جيل سرد، على الرغم من التشابه بين هذه المهام.نحن نهدف إلى سد هذه الفجوة من خلال تطبيق وتقييم التقدم في طرق فك تشفير جيل الاستجابة العصبية إلى توليد السرد العصبي.على وجه الخصوص، نحن نوظف GPT-2 وأداء الأزمة عبر عتبات أخذ العينات النواة ومثبتة تنوعا فرطيا مثبطا --- على وجه التحديد، والحد الأقصى للمعلومات المتبادلة - - تحليل النتائج على معايير متعددة مع التقييم التلقائي والإنساني.نجد أن (1) أخذ عينات نواة أفضل عموما مع عتبات بين 0.7 و 0.9؛(2) الحد الأقصى لهدف المعلومات المتبادلة يمكن أن يحسن نوعية القصص التي تم إنشاؤها؛و (3) لا ترتبط مقاييس التلقائية المنشأة بشكل جيد مع الأحكام الإنسانية لجودة السرد على أي متري نوعي.
Narrative generation is an open-ended NLP task in which a model generates a story given a prompt. The task is similar to neural response generation for chatbots; however, innovations in response generation are often not applied to narrative generation, despite the similarity between these tasks. We aim to bridge this gap by applying and evaluating advances in decoding methods for neural response generation to neural narrative generation. In particular, we employ GPT-2 and perform ablations across nucleus sampling thresholds and diverse decoding hyperparameters---specifically, maximum mutual information---analyzing results over multiple criteria with automatic and human evaluation. We find that (1) nucleus sampling is generally best with thresholds between 0.7 and 0.9; (2) a maximum mutual information objective can improve the quality of generated stories; and (3) established automatic metrics do not correlate well with human judgments of narrative quality on any qualitative metric.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما يتطلب جيل النص الشرطي القيود المعجمية، أي الكلمات التي يجب أو لا ينبغي إدراجها في نص الإخراج. في حين أن الوصفة المهيمنة لجيل النظام الشرطي كانت نماذج لغوية متماثلة على نطاق واسع يتم تصويرها على بيانات التدريب الخاصة بمهام المهام، فإن مثل هذه
إن فهم مشاعر المتكلم وإنتاج الاستجابات المناسبة مع اتصال العاطفة هو مهارة متتالية رئيسية لأنظمة الحوار التعاطفية.في هذه الورقة، نقترح تقنية بسيطة تسمى فك الترميز العاطفي لتوليد الاستجابة المتعاطفة.يمكن أن تتضمن طريقةنا بفعالية إشارات العاطفة أثناء كل
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت
على مدار العقد الماضي، طورت مجال معالجة اللغة الطبيعية مجموعة واسعة من الأساليب الحسابية لمعرفة الرواية، بما في ذلك تلخيص، استنتاج المنطقي، والكشف عن الحدث.في حين أن هذا العمل قد جلب عدسة تجريبية مهمة لفحص السرد، فهو مطلقات كبيرة من الجسم الكبير من ا
وقد مكن التحول إلى النماذج العصبية في إحالة الجيل التعبير (REG) المزيد من النماذج الطبيعية، ولكن بتكلفة الترجمة الترجمة الشفوية.نجاد بأن دمج المنطق العملي في استنتاج نماذج التوليد غير المرجعية للسياق يمكن أن يتجاوز سمات REG التقليدية والعملية، لأن هذ