إن فهم مشاعر المتكلم وإنتاج الاستجابات المناسبة مع اتصال العاطفة هو مهارة متتالية رئيسية لأنظمة الحوار التعاطفية.في هذه الورقة، نقترح تقنية بسيطة تسمى فك الترميز العاطفي لتوليد الاستجابة المتعاطفة.يمكن أن تتضمن طريقةنا بفعالية إشارات العاطفة أثناء كل خطوة فك التشفير، ويمكن تقديمها بالإضافة إلى ذلك بتشمس العاطفة المزدوجة الإضافية، والتي تتعلم تضمين منفصل للمتكلم والمستمع بالنظر إلى قاعدة العاطفة للحوار.تشير الدراسات التجريبية الواسعة إلى أن نماذجنا تعتبر أكثر تعاطفا عن طريق التقييمات البشرية، بالمقارنة مع العديد من الأساليب الرئيسية القوية للاستجابة التعاطفية.
Understanding speaker's feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
المراجع المستخدمة
https://aclanthology.org/
يظهر التطوير الحديث في NLP اتجاها قويا نحو تكرير النماذج المدربة مسبقا مع مجموعة بيانات خاصة بالمجال. هذا هو الحال بشكل خاص لتوليد الاستجابة حيث تلعب العاطفة دورا مهما. ومع ذلك، لا تزال مجموعات البيانات المتعاطفية الحالية صغيرة وتأخير الجهود البحثية
التركيز النهج الحالية لتوليد الاستجابة المتعاطفة على تعلم نموذج للتنبؤ بميزة العاطفة وتوليد استجابة بناء على هذه الملصق وحققت نتائج واعدة. ومع ذلك، فإن السبب العاطفي، وهو عامل أساسي للاستجابة التعاطفية، يتم تجاهله. السبب العاطفة هو حافز للعواطف البشر
يتطلب التواصل السلس والفعال القدرة على أداء استنتاج المناشد الكامن أو الصريح. يركز معايير التفكير في المناولة (مثل Socialiqa و Commonsenseqa) بشكل رئيسي على المهمة التمييزية المتمثلة في اختيار الإجابة الصحيحة من مجموعة من المرشحين، ولا تنطوي على تولي
الجيل السردي هو مهمة NLP مفتوحة العضوية التي يولد فيها نموذج قصة إعطاء موجه.المهمة تشبه توليد الاستجابة العصبية لل Chatbots؛ومع ذلك، غالبا ما لا يتم تطبيق الابتكارات في توليد الاستجابة على جيل سرد، على الرغم من التشابه بين هذه المهام.نحن نهدف إلى سد
التعاطف هو قدرات معرفية معقدة تستند إلى منطق الدول العاطفية الأخرى. من أجل فهم الآخرين بشكل أفضل والتعبير عن التعاطف الأقوى في الحوارات، نجادل بأننا يجب معالجة قضيتين في الوقت نفسه: (1) تحديد أي كلمة هي سبب عاطفة الآخر من كلامه و (2) تعكس تلك كلمات م