كان التقييم البشري على مستوى المستند للترجمة الآلية (MT) يثير اهتماما بالمجتمع.ومع ذلك، يعرف القليل عن قضايا استخدام منهجيات مستوى المستند لتقييم جودة MT.في هذه المقالة، نقارن نتائج اتفاقية Insent-Annotator (IAA)، والجهد لتقييم الجودة في منهجيات مختلفة على مستوى المستندات، وقضية رسالة التسليم عند تقييم الأحكام خارج السياق.
Document-level human evaluation of machine translation (MT) has been raising interest in the community. However, little is known about the issues of using document-level methodologies to assess MT quality. In this article, we compare the inter-annotator agreement (IAA) scores, the effort to assess the quality in different document-level methodologies, and the issue of misevaluation when sentences are evaluated out of context.
المراجع المستخدمة
https://aclanthology.org/
تؤكد الدراسات الحديثة على حاجة إلى سياق وثائق في التقييم البشري لترجمات الماكينة، لكن القليل من الأبحاث قد تم في تأثير واجهات المستخدم على الإنتاجية العنصرية وموثوقية التقييمات.في هذا العمل، نقوم بمقارنة بيانات التقييم البشري من أحدث حملتين تقييمين م
في الآونة الأخيرة، أصبح مجتمع الترجمة الآلية أكثر اهتماما بالتقييم على مستوى المستندات خاصة في ضوء ردود الفعل على مطالبات التكافؤ البشري "، لأن دراسة الجودة على مستوى الوثيقة بدلا من مستوى الحكم يسمح بذلكتقييم السياق Suprasententents، توفير تقييم أكث
إن استخراج العلاقات على مستوى المستند هو مهمة صعبة، تتطلب التفكير في جمل متعددة للتنبؤ بمجموعة من العلاقات في وثيقة.في هذه الورقة، نقترح إطار رواية E2GRE (الكيان والأدلة استخراج التعادل الموجود) التي تستخرج العلاقات بشكل مشترك وعمليات الأدلة الأساسية
غالبا ما يتم انتقاد حلول التعلم الآلية لعدم وجود شرح لنجاحاتها وفشلها. فهم المثيلات التي يتم إساءة استخدامها ولماذا ضرورية لتحسين عملية التعلم. يساعد هذا العمل في ملء هذه الفجوة من خلال اقتراح منهجية تميز، حدد وقياس تأثير مثيلات صعبة في مهمة تصنيف ال
تبسيط النص هو تقنية قيمة.ومع ذلك، يقتصر البحث الحالي على تبسيط الجملة.في هذه الورقة، نحدد والتحقيق في مهمة جديدة من تبسيط نص المستندات على مستوى المستند، والتي تهدف إلى تبسيط وثيقة تتكون من جمل متعددة.بناء على مقالب ويكيبيديا، نقوم أولا ببناء مجموعة