ترغب بنشر مسار تعليمي؟ اضغط هنا

ماذا يمكن أن تتعلم محددات النموذج المرجعي العصبي؟

What can Neural Referential Form Selectors Learn?

242   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

على الرغم من تحقيق النتائج المشجعة، غالبا ما يعتقد أن نماذج توليد تعبير التعبير العصبي لا تفتقر إلى الشفافية.بركأنا نماذج اختيار النماذج المرجعية العصبية (RFS) لمعرفة إلى أي مدى يتم تعلم الميزات اللغوية التي تؤثر على شكل RE وأسرها نماذج RFS الحديثة.تظهر نتائج 8 مهام التحقيق أن جميع الميزات المحددة تعلمت إلى حد ما.تعرض المهام التحقيق المتعلقة بالحالة المرجعية والموقف النحوي أعلى أداء.تم تحقيق أدنى أداء من خلال النماذج التحقيقية المصممة للتنبؤ خصائص هيكل الخطاب خارج مستوى الجملة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نماذج اللغة التوليدية المدربة على كبيرة، يمكن لشركة Corga الإجابة على الأسئلة حول مرور عن طريق توليد استمرار المرجح للمقطع الذي يتبعه زوج سؤال / إجابة.ومع ذلك، تختلف معدلات الدقة اعتمادا على نوع السؤال المطروح.في هذه الورقة، نحتفظ بالمرور الثابت، واخ تبار مجموعة واسعة من أنواع الأسئلة، واستكشاف نقاط القوة والضعف في نموذج لغة GPT-3.نحن نقدم أسئلة المرور واختبارها كتحدي محدد لنماذج لغات أخرى.
تقوم الترجمة العصبية متعددة اللغات (MNMT) بتدريب نموذج NMT واحد يدعم الترجمة بين لغات متعددة، بدلا من تدريب نماذج منفصلة لغات مختلفة. تعلم نموذج واحد يمكن أن يعزز الترجمة المنخفضة الموارد من خلال الاستفادة من البيانات من لغات متعددة. ومع ذلك، فإن أدا ء نموذج MNMT يعتمد اعتمادا كبيرا على نوع اللغات المستخدمة في التدريب، حيث أن نقل المعرفة من مجموعة متنوعة من اللغات تتحلل أداء الترجمة بسبب النقل السلبي. في هذه الورقة، نقترح مقاربة تقطير المعرفة التسلسل الهرمية (HKD) ل MNMT والتي تتمتع بالجماعات اللغوية التي تم إنشاؤها وفقا للميزات النموذجية والهلوجين من اللغات للتغلب على مسألة النقل السلبي. ينشئ HKD مجموعة من نماذج مساعد المعلم متعددة اللغات عبر آلية تقطير المعرفة الانتقائية تعتمد على مجموعات اللغات، ثم قم بالتقطير النموذج النهائي متعدد اللغات من المساعدين بطريقة تكيف. النتائج التجريبية المشتقة من مجموعة بيانات TED مع 53 لغة توضح فعالية نهجنا في تجنب تأثير النقل السلبي في MNMT، مما يؤدي إلى أداء ترجمة محسنة (حوالي 1 درجة بلو في المتوسط) مقارنة مع خطوط الأساس القوية.
أهداف المحاذاة الكامنة مثل CTC والفأس تحسن بشكل كبير نماذج الترجمة الآلية غير التلقائي.هل يمكنهم تحسين النماذج التلقائية أيضا؟نستكشف إمكانية تدريب نماذج الترجمة الآلية ذات الجهاز التلقائي بأهداف محاذاة كامنة، ومراقبة ذلك، في الممارسة العملية، ينتج هذ ا النهج نماذج التدهور.نحن نقدم شرحا نظريا لهذه النتائج التجريبية، وأثبت أن أهداف المحاذاة الكامنة غير متوافقة مع إجبار المعلم.
تتطلب المهام الفرعية لتصنيف النية، مثل التواضع على تحول التوزيع، والتكيف مع مجموعات المستخدمين المعينة والتخصيص، والكشف خارج المجال، ومجموعات بيانات واسعة ومرنة للتجارب والتقييم.نظرا لأن جمع مجموعات البيانات هذه هي الوقت والمستهلك للعمل، نقترح استخدا م أساليب جيل النص لجمع البيانات.يجب تدريب المولد على توليد الكلام التي تنتمي إلى نية معينة.نستكشف مناهضين لتوليد الكلام الموجهين في المهام: في نهج الطلقة الصفرية، يتم تدريب النموذج على توليد الكلام من النوايا المشاهدة ويتم استخدامها أيضا لتوليد الكلام للمحاطة غير المرئية أثناء التدريب.في نهج طلقة واحدة، يتم تقديم النموذج مع كلام واحد من نية الاختبار.نحن نؤدي التقييم التلقائي الشامل والبشري للخصائص الجوهرية لنهج الجيلين.يتم تصنيف سمات البيانات التي تم إنشاؤها من مجموعات الاختبار الأصلية، التي تم جمعها عبر مصادر الحشد.
أصبحت تمثيلات ناقلات عنصر مركزي في نمذجة اللغة الدلالية، مما يؤدي إلى التداخل الرياضي مع العديد من الحقول بما في ذلك النظرية الكمومية. التركيز هو الهدف الأساسي لهذه التمثيل: تمثيل تمثيلات مع الرطب "والأسماك"، كيف ينبغي تمثيل مفهوم السمك الرطب؟ يستطلع ورقة الموضع هذه هذه السؤال من نقطتين من الرأي. الأول يعتبر أول سؤال حول ما إذا كان يمكن أن ينجح التمثيل الرياضي الصريح باستخدام الأدوات فقط من داخل الجبر الخطي، أو ما إذا كانت هناك حاجة إلى أدوات رياضية أخرى. والثاني تعتبر ما إذا كان ينبغي وصف تكوين ناقلات دلالي بصراحة رياضيا، أو ما إذا كان يمكن أن يكون تأثير جانبي نموذجي على تدريب شبكة عصبية. سؤال ثالث وأحدث هو ما إذا كان يمكن تنفيذ نموذج تركيبي على كمبيوتر Quantum. بالنظر إلى الطبيعة الخطية الجوهرية لميكانيكا الكم، نقترح أن هذه الأسئلة مرتبطة، وأن هذا الاستطلاع قد يساعد في تسليط الضوء على عمليات المرشحين لتنفيذ الكم في المستقبل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا