ترغب بنشر مسار تعليمي؟ اضغط هنا

أعلى مستوياتها وخاناتها من أساليب التكيف المجال المعجمية البسيطة للترجمة الآلية العصبية

The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation

316   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أنظمة الترجمة الآلية عرضة لمواطيات المجال، خاصة في سيناريو منخفض الموارد.غالبا ما تكون ترجمات خارج النطاق ذات جودة رديئة وعرضة للهلوسة، بسبب تحيز التعرض والكشف بمثابة نموذج لغة.نعتمد نهجين لتخفيف هذه المشكلة: القائمة المختصرة المعجمية مقيدة بمحاذاة إيماء IBM، وفرض الفرضية القائمة على التشابه.الأساليب هي رخيصة حسابية وتظهر النجاح على مجموعات اختبار الموارد المنخفضة من الموارد.ومع ذلك، فإن الطرق تفقد ميزة عند وجود بيانات كافية أو عدم تطابق مجال كبير جدا.يرجع ذلك إلى كل من نموذج IBM يفقد ميزته على المحاذاة العصبية المستفادة ضمنيا، وقضايا تجزئة الكلمات الفرعية للكلمات غير المرئية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف قدان شرائح طويلة من أجل حماية السرية، نجد أن جودة NMT يمكن أن تستفيد كثيرا من هذا التكيف، وأنه يمكن الحصول على مزيد من المكاسب مع تقنية علامات بسيطة.
يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا لكبير، والانفجار النموذجي. لمعالجة هذه المشكلات الثلاثة، نقترح طريقة للتقسيم والتغلب عليها "والتي تعتمد على أهمية الخلايا العصبية أو المعلمات لنموذج الترجمة. في هذه الطريقة، نقوم أولا بإزالة النموذج ويحافظ على الخلايا العصبية أو المعلمات المهمة فقط، مما يجعلها مسؤولة عن كل من المجال العام والترجمة داخل المجال. ثم علينا مزيد من تدريب النموذج المعاني الذي يشرف عليه النموذج الكامل الأصلي مع تقطير المعرفة. أخيرا، نوسع النموذج إلى الحجم الأصلي وضبط المعلمات المضافة للترجمة داخل المجال. أجرينا تجارب على أزواج ومجالات مختلفة للغة والنتائج تظهر أن طريقتنا يمكن أن تحقق تحسينات كبيرة مقارنة بالعديد من خطوط الأساس القوية.
طرق ناجحة للترجمة الآلية العصبية غير المنشأة (UNMT) توظف الاحتجاج عبر اللغات عبر الإشراف الذاتي، في كثير من الأحيان في شكل نمذجة لغة ملمقة أو مهمة توليد التسلسل، والتي تتطلب نموذج محاذاة التمثيلات المعجمية والفوضيةاللغتين.بينما يعمل الاحتجاج عبر اللغ ات اللغوي لغات مماثلة مع كوربورا وفيرة، فإنه يؤدي بشكل سيئ في اللغات المنخفضة والبستية.أظهرت الأبحاث السابقة أن هذا هو أن التمثيلات غير محاذاة بما فيه الكفاية.في هذه الورقة، نعزز نموذج اللغة الملثملة ثنائية اللغة بإحاطا بمعلومات على المستوى المعجمي باستخدام تضيير الكلمات الفرعية عبر مستوى المستوى.توضح النتائج التجريبية الأداء المحسن على حد سواء على نظام التعمير (ما يصل إلى 4.5 بلو) وتحليل المعجم الثنائي اللغة باستخدام طريقتنا مقارنة بناس خط الأساس.
تحتاج أنظمة الإنتاج NMT عادة إلى خدمة مجالات المتخصصة التي لا تغطيها كوربيا كبيرة ومتاحة بسهولة بشكل مناسب.ونتيجة لذلك، غالبا ما يكون الممارسون نماذج غرضا عاما نماذج عامة على كل من المجالات التي يلبيها منظمةها.ومع ذلك، يمكن أن يصبح عدد المجالات كبيرا ، مما يتجمع مع عدد اللغات التي تحتاج إلى خدمة يمكن أن تؤدي إلى وضع أسطول غير قابل للحل من النماذج والمحافظة عليها.نقترح علامات متعددة الأبعاد، وهي طريقة لضبط نموذج NMT واحد على عدة مجالات في وقت واحد، وبالتالي تقليل تكاليف التطوير والصيانة بشكل كبير.نحن ندير تجارب حيث يقارن نموذج واحد MDT بشكل إيجابي لمجموعة من نماذج SOTA متخصصة، حتى عند تقييمها على المجال كانت تلك الأساس التي تم ضبطها بشكل جيد.إلى جانب بلو، نبلغ عن نتائج التقييم البشري.تعيش نماذج MDT الآن في Booking.com، مما يؤدي إلى تشغيل محرك MT الذي يخدم ملايين الترجمات يوميا في أكثر من 40 لغة مختلفة.
في الآونة الأخيرة، تم اقتراح عدد من الأساليب لتحسين أداء الترجمة للترجمة الآلية العصبية على مستوى المستند (NMT). ومع ذلك، فإن القليل من التركيز على موضوع تناسق الترجمة المعجمية. في هذه الورقة، نطبق ترجمة واحدة لكل خطاب "في NMT، وتهدف إلى تشجيع تناسق الترجمة المعجمية ل NMT على مستوى المستند. تتم ثم نشجع ترجمة هذه الكلمات داخل رابط لتكون متسقة بطريقتين. من ناحية، عند ترميز الجمل داخل وثيقة نتخذها بشكل صحيح معلومات السياق من هذه الكلمات. من ناحية أخرى، نقترح وظيفة خسارة مساعدة إلى تقييد أفضل أن ترجمتهم يجب أن تكون متسقة. النتائج التجريبية على الصينية english والإنجليزية → توضح مهام الترجمة الفرنسية أن نهجنا لا يحقق فقط الأداء الحديث في درجات بلو، ولكن أيضا يحسن إلى حد كبير الاتساق المعجمي في الترجمة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا