طرق ناجحة للترجمة الآلية العصبية غير المنشأة (UNMT) توظف الاحتجاج عبر اللغات عبر الإشراف الذاتي، في كثير من الأحيان في شكل نمذجة لغة ملمقة أو مهمة توليد التسلسل، والتي تتطلب نموذج محاذاة التمثيلات المعجمية والفوضيةاللغتين.بينما يعمل الاحتجاج عبر اللغات اللغوي لغات مماثلة مع كوربورا وفيرة، فإنه يؤدي بشكل سيئ في اللغات المنخفضة والبستية.أظهرت الأبحاث السابقة أن هذا هو أن التمثيلات غير محاذاة بما فيه الكفاية.في هذه الورقة، نعزز نموذج اللغة الملثملة ثنائية اللغة بإحاطا بمعلومات على المستوى المعجمي باستخدام تضيير الكلمات الفرعية عبر مستوى المستوى.توضح النتائج التجريبية الأداء المحسن على حد سواء على نظام التعمير (ما يصل إلى 4.5 بلو) وتحليل المعجم الثنائي اللغة باستخدام طريقتنا مقارنة بناس خط الأساس.
Successful methods for unsupervised neural machine translation (UNMT) employ cross-lingual pretraining via self-supervision, often in the form of a masked language modeling or a sequence generation task, which requires the model to align the lexical- and high-level representations of the two languages. While cross-lingual pretraining works for similar languages with abundant corpora, it performs poorly in low-resource and distant languages. Previous research has shown that this is because the representations are not sufficiently aligned. In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings. Empirical results demonstrate improved performance both on UNMT (up to 4.5 BLEU) and bilingual lexicon induction using our method compared to a UNMT baseline.
المراجع المستخدمة
https://aclanthology.org/
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة
الاتساق الملخص للنموذج --- أي ثابت سلوكه بموجب استطلاعات المعنى المحفوظة في مدخلاته --- هو ممتلكات مرغوبة للغاية في معالجة اللغة الطبيعية.في هذه الورقة ندرس السؤال: نماذج اللغة المحددة مسبقا (PLMS) بما يتفق فيما يتعلق بالمعرفة الواقعية؟تحقيقا لهذه ال
أنظمة الترجمة الآلية عرضة لمواطيات المجال، خاصة في سيناريو منخفض الموارد.غالبا ما تكون ترجمات خارج النطاق ذات جودة رديئة وعرضة للهلوسة، بسبب تحيز التعرض والكشف بمثابة نموذج لغة.نعتمد نهجين لتخفيف هذه المشكلة: القائمة المختصرة المعجمية مقيدة بمحاذاة إ
تركز العمل الحالي على التحقيق في نماذج اللغة المحددة مسبقا (LMS) في الغالب على المهام الأساسية على مستوى الجملة.في هذه الورقة، نقدم إجراء خطاب على مستوى المستندات لتقييم قدرة LMS المسبقة على التقاط العلاقات على مستوى المستندات.نقوم بتجربة 7 LMS محددة
في الآونة الأخيرة، تم اقتراح عدد من الأساليب لتحسين أداء الترجمة للترجمة الآلية العصبية على مستوى المستند (NMT). ومع ذلك، فإن القليل من التركيز على موضوع تناسق الترجمة المعجمية. في هذه الورقة، نطبق ترجمة واحدة لكل خطاب "في NMT، وتهدف إلى تشجيع تناسق