ترغب بنشر مسار تعليمي؟ اضغط هنا

تجميع المفردات الأولية لتحسين التعميم عبر اللغات

Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization

676   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعرض نماذج اللغة متعددة اللغات أداء أفضل لبعض اللغات مقارنة بالآخرين (Singh et al.، 2019)، وعدد العديد من اللغات لا تستفيد من تقاسم متعدد اللغات على الإطلاق، من المفترض أن تكون نتيجة تجزئة متعددة اللغات (بيزال O وآخرون)2020).يستكشف هذا العمل فكرة تعلم نماذج اللغة متعددة اللغات بناء على تجميع شرائح أحادية الأونلينغ.نعرض تحسينات كبيرة على تجزئة وتدريب وتعدد اللغات القياسية عبر تسعة لغات بشأن مهمة الإجابة على سؤال، سواء في نظام نموذج صغير ونموذج حجم قاعدة بيرت.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تستخدم العديد من الأعمال الحديثة تنظيم التناسق "لتحسين تعميم النماذج المدربة مسبقا بشكل جيد، متعدد اللغات والإنجليزية فقط. هذه الأعمال تشجع النواتج النموذجية على أن تكون مشابهة بين الإصدار المضطربة والطبيعية من المدخلات، وعادة من خلال معاقبة اختلاف K ullback - Leibler (KL) بين توزيع الاحتمالية للنموذج المضطرب والطبيعي. نعتقد أن خسائر الاتساق قد تنظم ضمنا المشهد الخسارة. على وجه الخصوص، نبني على ما يكافؤ على العمل الذي ينظم ضمنيا أو بوضوح تنظيم أثر مصفوفة معلومات فيشر (FIM)، تضخيم التحيز الضمني ل SGD لتجنب الحفظ. تظهر نتائجنا الأولية من الناحية التجريبية وموضوعيا أن خسائر الاتساق مرتبطة بالفترة الفائضة، وإظهار أن الحد الأدنى المسطح الضمني بتتبع صغير من FIM يحسن الأداء عند ضبط نموذج متعدد اللغات على لغات إضافية. نحن نهدف إلى تأكيد هذه النتائج الأولية على مزيد من مجموعات البيانات، واستخدام رؤىنا لتطوير تقنيات منخفضة اللغات متعددة اللغات.
أظهرت الدراسات الحديثة أن النماذج المتبادلة المدربة مسبقا تحقق أداء مثير للإعجاب في المهام المتقاطعة المتبادلة. يستفيد هذا التحسن من تعلم كمية كبيرة من مونوللقي والموازيات. على الرغم من أنه من المعترف به عموما أن شركة فورانيا الموازية أمر بالغ الأهمي ة لتحسين الأداء النموذجي، فإن الأساليب الحالية غالبا ما تكون مقيدة بحجم Corpora المتوازي، خاصة لغات الموارد المنخفضة. في هذه الورقة، نقترح Ernie-M، وهي طريقة تدريب جديدة تشجع النموذج على محاذاة تمثيل لغات متعددة مع شركة أحادية الأحادية، للتغلب على القيد أن أماكن حجم Corpus الموازي على الأداء النموذجي. إن رؤيتنا الرئيسية هي دمج الترجمة الخلفي في عملية التدريب المسبق. نحن نولد أزواج جملة زائفة بالموازاة على كائن أحادي مونولينغ لتمكين تعلم المحاذاات الدلالية بين لغات مختلفة، وبالتالي تعزيز النمذجة الدلالية للنماذج المتبقية. تظهر النتائج التجريبية أن Ernie-M يتفوق على النماذج الحالية عبر اللغات الحالية ويوفر نتائج حالة جديدة من بين الفنين في مختلف مهام المصب عبر اللغات. سيتم إجراء الرموز والنماذج المدربة مسبقا متاحة للجمهور.
على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك ل صريح من قبل النحو الرمزي، نقترح إطار فك التشفير الجديد الذي يحافظ على التعبير عن النماذج والعمومية من نماذج التسلسل إلى التسلسل مع تضم محاذاة على غرار المعجم ومعالجة المعلومات المنفذة. على وجه التحديد، نقوم بتحلل فك التشفير في مرحلتين حيث يتم وضع علامة على حامل الإدخال أولا مع رموز الدلالية التي تمثل معنى الكلمات الفردية، ثم يتم استخدام نموذج تسلسل إلى تسلسل للتنبؤ بتصميم تمثيل المعنى النهائي على الكلام والعلامة المتوقعة تسلسل. النتائج التجريبية على ثلاث مجموعات بيانات تحليل الدلالات توضح أن النهج المقترح يحسن باستمرار التعميم التركيبي عبر الهندسة النموذجية والنطاقات والإضفاءات الدلالية.
حققت المحولات التي تم تدريبها مسبقا على شركة متعددة اللغات، مثل MBERT و XLM-ROBERTA، قدرات نقل متبقية مثيرة للإعجاب. في إعداد نقل الطلقة الصفرية، يتم استخدام بيانات التدريب الإنجليزية فقط، ويتم تقييم النموذج الدقيق على لغة مستهدفة أخرى. على الرغم من أن هذا يعمل بشكل جيد بشكل مدهش، فقد تمت ملاحظة تباين كبير في الأداء اللغوي المستهدف بين مختلف عمليات التشغيل الدقيقة، وفي إعداد الطلقة الصفرية، لا توجد بيانات تطوير اللغة المستهدفة متاحة للتحديد بين نماذج متعددة ذات الضبط. اعتمد العمل المسبق على بيانات Dev الإنجليزية لتحديد بين النماذج التي تم ضبطها بشكل جيد مع معدلات التعلم المختلفة وعدد الخطوات وغيرها من أنواع التشعبات، والتي غالبا ما تؤدي إلى اختيارات فرعية نفسها. في هذه الورقة، نوضح أنه من الممكن تحديد نماذج أفضل باستمرار عند توفر كميات صغيرة من البيانات المشروحة بلغات محورية إضافية. نقترح نهجا للتعلم الآلي للاختيار النموذجي الذي يستخدم التمثيلات الداخلية للأنظمة ذات الطراز الدقيق للتنبؤ بقدراتها المتبادلة. في تجارب شاملة، نجد أن هذه الطريقة تختار باستمرار نماذج أفضل من بيانات التحقق من صحة اللغة الإنجليزية عبر عشرين لغة (بما في ذلك 8 لغات منخفضة الموارد)، وغالبا ما تحقق النتائج التي تتميز باختيار نموذج باستخدام بيانات تطوير اللغة المستهدفة.
من الصعب معالجة وسائل التواصل الاجتماعي لأدوات معالجة اللغة الطبيعية القائمة، بسبب الأخطاء الإملائية، والكلمات غير القياسية، والتقصاصات، والرسملة غير القياسية وعلامات الترقيم.إحدى الطرق للتحايل على هذه المشكلات هي تطبيع بيانات الإدخال قبل المعالجة.رك زت معظم الأعمال السابقة بلغة واحدة فقط، والتي هي في الغالب الإنجليزية.في هذه الورقة، نحن أول من يقترح نموذجا للتطبيع المتبادل، الذي نشارك فيه في مهمة WNUT 2021 المشتركة.تحقيقا لهذه الغاية، نستخدم Monoise كنقطة انطلاق، وإجراء تكييف بسيط للتطبيق عبر اللغات.ينفأ النموذج الخاص بنا المقترح على خط الأساس في الإجازة التي يوفرها المنظمون الذين نسخ المدخلات.علاوة على ذلك، نستكشف نموذجا مختلفا تماما يحول المهمة إلى مهمة وضع علامة تسلسل.أداء هذا النظام الثاني منخفض، لأنه لا يأخذ القيمة في الاعتبار في تنفيذنا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا