كيفية إنشاء ملخصات من أنماط مختلفة دون مطالبة كوربورا في الأساليب المستهدفة، أو تدريب نماذج منفصلة؟نقدم أساليب رواية يمكن نشرها أثناء فك التشفير الموجز على أي نموذج تلخيص مقرها المحولات المدرب مسبقا.(1) تعديل حالة وحدة فك التشفير يعدل على الفور حالات فك الترميز النهائية مع هدنات النمط المدربين خارجيا، لإثارة تحسين الإخراج مقابل نمط مستهدف.(2) تنبؤ وحدة الكلمة تقييد استخدام كلمة لفرض عنصر تحكم جذاب قوي أثناء التوليد.في تجارب تلخص مع التحكم في البساطة، يجد التقييم التلقائي والقضاة البشري نماذجنا المنتجة للنواتج بلغات أبسط بينما لا تزال مفيدة.ونحن نولد أيضا عناوين الأخبار مع العديد من الميول الإيديولوجية، والتي يمكن تمييزها من قبل البشر مع احتمال معقول.
How to generate summaries of different styles without requiring corpora in the target styles, or training separate models? We present two novel methods that can be deployed during summary decoding on any pre-trained Transformer-based summarization model. (1) Decoder state adjustment instantly modifies decoder final states with externally trained style scorers, to iteratively refine the output against a target style. (2) Word unit prediction constrains the word usage to impose strong lexical control during generation. In experiments of summarizing with simplicity control, automatic evaluation and human judges both find our models producing outputs in simpler languages while still informative. We also generate news headlines with various ideological leanings, which can be distinguished by humans with a reasonable probability.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نهدف إلى معالجة التحديات المحيطة بترجمة النص الصيني القديم: (1) الفجوة اللغوية بسبب الاختلاف في عصائر النتائج في الترجمات التي هي فقيرة في الجودة، و (2) تفتقد معظم الترجمات المعلومات السياقيةغالبا ما يكون هذا أمرا ضروريا للغاية لفهم ال
حقق استنتاج اللغة الطبيعي (NLI) اهتماما كبيرا في السنوات الأخيرة؛ومع ذلك، ظل وعد تطبيق اختراقات NLI لمهام NLP الأخرى المنفذة غير الموحدة.في هذا العمل، نستخدم الفهم القروض متعدد الخيارات (MCRC) وفحص صحة واقعية لمهام التلخيص النصي (CFCS) للتحقيق في الأ
تعلم تمثيل كامن جيد ضروري لنقل نمط النص، والذي يولد جملة جديدة عن طريق تغيير سمات جملة معينة مع الحفاظ على محتواها.تعتمد معظم الأعمال السابقة تمثيل تمثيل كامن Disentangled تعلم تحقيق نقل النمط.نقترح خوارزمية نقل نمط النص الجديد مع تمثيل كامن متشابكا،
نظرا لعدد كبير من الكيانات في قواعد المعرفة الطبية الحيوية، فإن جزء بسيط من الكيانات الصغيرة فقط بيانات التدريب المسمى. وهذا يستلزم كيان ربط النماذج التي يمكن أن تصل إلى ربط تذكر الكيانات غير المرئية باستخدام التمثيلات المستفادة للكيانات. يتذكر كل من
يمكن أن تكشف نمط النص أن يكشف السمات الحساسة للمؤلف (E.G. العمر والسباق) للقارئ، والذي يمكن، بدوره، يؤدي إلى انتهاكات الخصوصية والتحيز في كل من القرارات البشرية والخضارات على أساس النص. على سبيل المثال، قد تكشف أسلوب الكتابة في تطبيقات الوظائف عن سما