ترغب بنشر مسار تعليمي؟ اضغط هنا

اختر المغامرة الخاصة بك: اقتراحات مقدمة في الكتابة التعاونية لتقييم نماذج جيل القصة

Choose Your Own Adventure: Paired Suggestions in Collaborative Writing for Evaluating Story Generation Models

244   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توليد القصة هي مهمة مفتوحة وعشرية، مما يشكل تحديا لتقييم نماذج جيل القصة.نقدم اختبار المغامرة الخاصة بك، إعداد الكتابة التعاوني لتقييم نموذج الزوجي.تولد طرازان اقتراحات للناس لأنهم يكتبون قصة قصيرة؛نطلب من الكتاب اختيار أحد الاقتراحين، ونحن نلاحظ اقتراحات النموذج التي يفضلونها.كما يتيح الإعداد أيضا إجراء مزيد من التحليل بناء على المراجعات التي يقوم بها الناس إلى الاقتراحات.نظظ أن هذه التدابير، إلى جانب المقاييس التلقائية، توفر صورة إعلامية لأداء النماذج، سواء في الحالات التي تكون فيها الاختلافات في طرق التوليد صغيرة (عينة من أعلى النواة مقابل Top-K) وكبير (نماذج Fusion Fusion)وبعد



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يقارن تقييم نماذج الرد على الأسئلة التوضيحية حول التوقعات النموذجية. ومع ذلك، اعتبارا من اليوم، فإن هذه المقارنة تعتمد في الغالب معجمية، وبالتالي تفتقد الإجابات التي لا تحتوي على تداخل جذري ولكن لا تزال مماثلة متشابهة دلالة، وبالتالي علاج الإجابات ال صحيحة على أنها خاطئة. يعيق هذا التقليل من الأداء الحقيقي للنماذج قبول المستخدم في التطبيقات ويعقد مقارنة عادلة من النماذج المختلفة. لذلك، هناك حاجة إلى متري تقييم يعتمد على دلالات بدلا من تشابه السلسلة الخالصة. في هذه الورقة القصيرة، نقدم SAS، وهي متري مقرها في التشفير لتقدير تشابه الإجابة الدلالية، ومقارنتها بسبعة مقاييس موجودة. تحقيقا لهذه الغاية، نقوم بإنشاء مجموعة بيانات تقييم اللغة الإنجليزية ثلاثية وألمانية تحتوي على أزواج من الإجابات جنبا إلى جنب مع الحكم البشري من التشابه الدلالي، والتي نصرح لها جنبا إلى جنب مع تنفيذ Metric SAS والتجارب. نجد أن مقاييس التشابه الدلالي القائم على نماذج المحولات الأخيرة ترتبط بشكل أفضل بكثير مع الحكم البشري من مقاييس التشابه المعجمية التقليدية على مجموعات بياناتنا التي أنشأت حديثا ومجموعة بيانات واحدة من العمل ذي الصلة.
أظهرت الدراسات الحديثة أن نظام التحيز في نظام اقتراحات Thetext يمكن أن ينشر في كتابة المشروع.في هذه الدراسة التجريبية، نطلب من TheQuestion: كيف يتفاعل الناس مع نماذج الإشراطات النصية النصية، في Inline Next Threase Sugges-Tion واجهة وكيفية إدخال تحيز Senti-Ment في نموذج تنبؤ النص يؤثر على الكتابة؟نقدم دراسة تجريبية كخطوة غير مؤهلة للإجابة على هذا السؤال.
استولت رواية القصص الآلية منذ فترة طويلة اهتمام الباحثين في كل من الروايات في الحياة اليومية.تظهر أفضل القصص المصنوعة من قبل الإنسان مؤامرة متماسكة، وأحرف قوية، والالتزام بالأنواع، والأسماك التي لا تزال الدول الحالية من الفن لا تزال تكافح من أجل إنتا ج، حتى استخدام بهيئات المحولات.في هذه الورقة، نقوم بتحليل الأعمال في توليد القصة التي تستخدم مناهج التعلم الآلية إلى (1) التحكم في توليد القصة، (2) دمج معرفة المنطقية، (3) استنتاج إجراءات شخصية معقولة، و (4) توليد لغة إبداعية.
النماذج التركيبية المنظمة جذابة لأنها تتحلل صراحة المشاكل وتوفير مخرجات متوسطة تفسير تفسر الثقة في أن النموذج ليس مجرد إزالته على القطع الأثرية للبيانات. ومع ذلك، فإن تعلم هذه النماذج صعبة، ومع ذلك، نظرا لأن الإشراف على المهمة النهائية يوفر فقط إشارة غير مباشرة ضعيفة حول القيم التي يجب أن تتخذ القرارات الكامنة. غالبا ما يؤدي ذلك إلى فشل النموذج في تعلم كيفية تنفيذ المهام الوسيطة بشكل صحيح. في هذا العمل، نقدم طريقة للاستفادة من الأمثلة المقترنة التي توفر إشارات أقوى لتعلم القرارات الكامنة. عندما تتخلى أمثلة تدريبية ذات صلة بالحرارة الداخلية، نضيف هدف تدريب إضافي لتشجيع الاتساق بين قراراتهم الكامنة. لا يتطلب مثل هذا الهدف إشراف خارجي لقيم الإخراج الكامن، أو حتى المهمة النهائية، حتى الآن يوفر إشارة تدريب إضافية إلى ذلك من خلال أمثلة تدريب فردية أنفسهم. نحن نطبق طريقتنا لتحسين سؤال التركيبي الرد باستخدام شبكات الوحدات النمطية العصبية على Dropet DataSet. نستكشف ثلاث طرق للحصول على أسئلة مقترنة في قطرة: (أ) اكتشاف أمثلة مقترنة بشكل طبيعي داخل DataSet، (ب) بناء أمثلة مقترنة باستخدام القوالب، و (ج) إنشاء أمثلة مقنعة باستخدام نموذج جيل سؤال. إننا نوضح تجريبيا أن نهجنا المقترح يحسن التعميم داخل التوزيع ويؤدي إلى تصحيح تنبؤات القرارات الكامنة.
جيل القصة هي مهمة تهدف إلى إنشاء قصة ذات مغزى تلقائيا. هذه المهمة صعبة لأنها تتطلب فهما رفيع المستوى للمعنى الدلالي للجمل والسببية لأحداث القصة. تفشل نماذج NaiveSequence-To-Stuncence عموما في الحصول على هذه المعرفة، حيث يصعب ضمان صحة منطقية في نموذج جيل نصي دون تخطيط استراتيجي. في هذه الدراسة، نركز على التخطيط لسلسلة من الأحداث بمساعدة الرسوم البيانية الحدث واستخدام الأحداث لتوجيه المولد. بدلا من استخدام نموذج تسلسل إلى تسلسل لإخراج تسلسل، كما هو الحال في بعض الأعمال الموجودة، نقترح إنشاء تسلسل حدث من خلال المشي في رسم بياني حدث. يتم بناء الرسوم البيانية للحدث بناء على Corpus. لتقييم النهج المقترح، ندمج المشاركة البشرية، سواء في تخطيط الأحداث وتوليد القصة. استنادا إلى نتائج الشروح البشرية لارجكيستال، فقد ثبت أن نهجنا المقترح تقديم تسلسل وحدث صحيح منطقيا وقصصا مقارنة بالنهج السابقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا