ترغب بنشر مسار تعليمي؟ اضغط هنا

graphplan: توليد القصة عن طريق التخطيط مع الرسم البياني الأحداث

GraphPlan: Story Generation by Planning with Event Graph

330   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

جيل القصة هي مهمة تهدف إلى إنشاء قصة ذات مغزى تلقائيا. هذه المهمة صعبة لأنها تتطلب فهما رفيع المستوى للمعنى الدلالي للجمل والسببية لأحداث القصة. تفشل نماذج NaiveSequence-To-Stuncence عموما في الحصول على هذه المعرفة، حيث يصعب ضمان صحة منطقية في نموذج جيل نصي دون تخطيط استراتيجي. في هذه الدراسة، نركز على التخطيط لسلسلة من الأحداث بمساعدة الرسوم البيانية الحدث واستخدام الأحداث لتوجيه المولد. بدلا من استخدام نموذج تسلسل إلى تسلسل لإخراج تسلسل، كما هو الحال في بعض الأعمال الموجودة، نقترح إنشاء تسلسل حدث من خلال المشي في رسم بياني حدث. يتم بناء الرسوم البيانية للحدث بناء على Corpus. لتقييم النهج المقترح، ندمج المشاركة البشرية، سواء في تخطيط الأحداث وتوليد القصة. استنادا إلى نتائج الشروح البشرية لارجكيستال، فقد ثبت أن نهجنا المقترح تقديم تسلسل وحدث صحيح منطقيا وقصصا مقارنة بالنهج السابقة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

استولت رواية القصص الآلية منذ فترة طويلة اهتمام الباحثين في كل من الروايات في الحياة اليومية.تظهر أفضل القصص المصنوعة من قبل الإنسان مؤامرة متماسكة، وأحرف قوية، والالتزام بالأنواع، والأسماك التي لا تزال الدول الحالية من الفن لا تزال تكافح من أجل إنتا ج، حتى استخدام بهيئات المحولات.في هذه الورقة، نقوم بتحليل الأعمال في توليد القصة التي تستخدم مناهج التعلم الآلية إلى (1) التحكم في توليد القصة، (2) دمج معرفة المنطقية، (3) استنتاج إجراءات شخصية معقولة، و (4) توليد لغة إبداعية.
تهدف مهمة اكتشاف الحدث (ED) إلى تصنيف الأحداث من خلال تحديد الحدث الرئيسي تصادف الكلمات المضمنة في جزء من النص. أثبتت الأبحاث السابقة صحة علاقات التبعية النحوية الصابورة في شبكات تشكيلة تشكيلة (GCN). في حين أن الأساليب القائمة على GCN الحالية تستكشف علاقات الاعتماد العقدة الكامنة وفقا لقطعة توتور بقيمة ثابتة، فإن العار الديناميكي القائم على الانتباه، والتي يمكن أن تؤدي الكثير من الاهتمام إلى العقدة الرئيسية مثل حفل الحدث أو العقد المجاورة، وبعد في وقت واحد، تعاني من ظاهرة معلومات الرسم البياني التلاشي الناجمة عن Tensor المتأخر المتماثل، نماذج GCN الحالية لا يمكن تحقيق أداء عموما أعلى. في هذه الورقة، نقترح نماذج رواية ناشئة عن النفس شبكات التنزل المتبقية (SA-GRCN) لعلاقات التبعية الكامنة لعدة عقدة من خلال آلية الاهتمام الذاتي وإدخال الشبكة المتبقية الرسم البياني (GRESNET) لحل مشكلة تخفيض المعلومات الرسم البيانية وبعد على وجه التحديد، يتم بناء وحدة انتباه ذاتي لتوليد موتر الاهتمام، مما يمثل عشرات اهتمام الاعتماد من جميع الكلمات في الجملة. علاوة على ذلك، يضاف مصطلح الرسم البياني المتبقي إلى خط الأساس SA-GCN لبناء GRESNET. بالنظر إلى الاتصال النحوي لإدخال الشبكة، نقوم بتهيئة موتر المشجعي الناشئ دون معالجة وحدة الاهتمام الذاتي باعتباره المصطلح المتبقي. نقوم بإجراء تجارب على مجموعة بيانات ACE2005 وتظهر النتائج تحسنا كبيرا بشأن أساليب خط الأساس التنافسية.
الحكم من الانصهار هي مهمة توليد مشروطة تدمج العديد من الجمل ذات الصلة في واحدة متماسكة، والتي يمكن اعتبارها عقوبة ملخص. منذ فترة طويلة تم الاعتراف بأهمية الانصهار منذ فترة طويلة من قبل المجتمعات في توليد اللغة الطبيعية، وخاصة في تلخيص النص. لا يزال ي مثل تحديا لنموذج لخصي مخبئي عصبي لإنشاء عقوبة ملخص متكاملة جيدا. في هذه الورقة، نستكشف طريقة انصهار الجملة الفعالة في سياق تلخيص النص. نقترح إنشاء رسم بياني حدث من جمل المدخلات لالتقاط الأحداث ذات الصلة بفعالية وتنظيمها بطريقة منظمة واستخدام الرسم البياني الحدث الذي تم إنشاؤه لتوجيه الانصهار الجملة. بالإضافة إلى الاستفادة من الاهتمام على محتوى الجمل والعقد الرسم البياني، فإننا نضع كذلك آلية انتباه تدفق الرسوم البيانية للتحكم في عملية الانصهار عبر بنية الرسم البياني. عند تقييم بيانات خلطة الجملة التي تم بناؤها من مجموعة بيانات ملخصة، CNN / DALIYMAIL ومتعدد الأخبار، يظهر طرازنا لتحقيق أدائه الحديث من حيث الحزام وغيرها من المقاييس مثل معدل الانصهار والإخلاص.
نحن نقدم Graformer، وهي عبارة عن بنية ترميز ترميز ترميز محول المبالية على أساس الرسوم البيانية إلى النص.مع انتباهنا عن الرسوم البيانية لروايتنا، يعتمد ترميز العقدة على جميع العقد في الرسم البياني للإدخال - ليس فقط الجيران المباشر - يسهل اكتشاف أنماط عالمية.نحن نمثل العلاقة بين العقدتين كطابع أقصر المسار بينهما.يتعلم Graformer الوزن هذه العلاقات العقدة العقدة بشكل مختلف عن رؤوس اهتمام مختلفة، وبالتالي تعلم وجهات نظر متصلة بشكل مختلف عن الرسم البياني للإدخال.نقوم بتقييم GRAFORMER على اثنين من المعايير الشهيرة في الرسم البياني إلى النص، وجدول الأعمال و Webnlg، حيث يحقق أداء قوي أثناء استخدام العديد من المعلمات أقل من الأساليب الأخرى.
تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event ke Eventke المحسن للحدث. على وجه التحديد، نظرا لل KG الأصلية، فإننا ندمج أول عقود حدث من خلال بناء شبكة غير متجانسة، حيث يتم توزيع العقد الكيانية وعقد الحدث على جانبي الشبكة بين روابط الوسيطة في الحدث. ثم نستخدم علاقات كيان الكيان من الروابط الزمنية KG والأحداث الزمنية الأصلية إلى الكيان والكيان الداخلي والوقت على التوالي. نقوم بتصميم طريقة تمرير رسائل مفيدة وتستند إلى الرواية، والتي يتم إجراؤها على كيان كيان وكيان الحدث وحدث الأحداث لفيد معلومات الحدث في AGBeddings KG. تظهر النتائج التجريبية على مجموعات البيانات في العالم الحقيقي أن الأحداث يمكن أن تحسن إلى حد كبير جودة AGEDDINGS KG على مهام متعددة المصب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا